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Hash Functions and Data Integrity
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9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re-
lated to conventional hash functions commonly used in non-cryptographic computer appli-
cations – in both cases, larger domains are mapped to smaller ranges – they differ in several
important aspects. Our focus is restricted to cryptographic hash functions (hereafter, simply
hash functions), and in particular to their use for data integrity and message authentication.

Hash functions take a message as input and produce an output referred to as a hash-
code, hash-result, hash-value, or simply hash. More precisely, a hash function hmaps bit-
strings of arbitrary finite length to strings of fixed length, say n bits. For a domainD and
rangeRwith h : D→R and |D| > |R|, the function is many-to-one, implying that the exis-
tence of collisions (pairs of inputs with identical output) is unavoidable. Indeed, restricting
h to a domain of t-bit inputs (t > n), if h were “random” in the sense that all outputs were
essentially equiprobable, then about 2t−n inputs would map to each output, and two ran-
domly chosen inputs would yield the same output with probability 2−n (independent of t).
The basic idea of cryptographic hash functions is that a hash-value serves as a compact rep-
resentative image (sometimes called an imprint, digital fingerprint, or message digest) of
an input string, and can be used as if it were uniquely identifiable with that string.

Hash functions are used for data integrity in conjunction with digital signature sch-
emes, where for several reasons a message is typically hashed first, and then the hash-value,
as a representative of the message, is signed in place of the original message (see Chap-
ter 11). A distinct class of hash functions, called message authentication codes (MACs),
allows message authentication by symmetric techniques. MAC algorithms may be viewed
as hash functions which take two functionally distinct inputs, a message and a secret key,
and produce a fixed-size (say n-bit) output, with the design intent that it be infeasible in
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322 Ch. 9 Hash Functions and Data Integrity

practice to produce the same output without knowledge of the key. MACs can be used to
provide data integrity and symmetric data origin authentication, as well as identification in
symmetric-key schemes (see Chapter 10).

A typical usage of (unkeyed) hash functions for data integrity is as follows. The hash-
value corresponding to a particular message x is computed at time T1. The integrity of this
hash-value (but not the message itself) is protected in some manner. At a subsequent time
T2, the following test is carried out to determine whether the message has been altered, i.e.,
whether a message x′ is the same as the original message. The hash-value of x′ is computed
and compared to the protected hash-value; if they are equal, one accepts that the inputs are
also equal, and thus that the message has not been altered. The problem of preserving the
integrity of a potentially large message is thus reduced to that of a small fixed-size hash-
value. Since the existence of collisions is guaranteed in many-to-one mappings, the unique
association between inputs and hash-values can, at best, be in the computational sense. A
hash-value should be uniquely identifiable with a single input in practice, and collisions
should be computationally difficult to find (essentially never occurring in practice).

Chapter outline

The remainder of this chapter is organized as follows. §9.2 provides a framework including
standard definitions, a discussion of the desirable properties of hash functions and MACs,
and consideration of one-way functions. §9.3 presents a general model for iterated hash
functions, some general construction techniques, and a discussion of security objectives
and basic attacks (i.e., strategies an adversary may pursue to defeat the objectives of a hash
function). §9.4 considers hash functions based on block ciphers, and a family of functions
based on the MD4 algorithm. §9.5 considers MACs, including those based on block ciphers
and customized MACs. §9.6 examines various methods of using hash functions to provide
data integrity. §9.7 presents advanced attack methods. §9.8 provides chapter notes with
references.

9.2 Classification and framework

9.2.1 General classification

At the highest level, hash functions may be split into two classes: unkeyed hash functions,
whose specification dictates a single input parameter (a message); and keyed hash functions,
whose specification dictates two distinct inputs, a message and a secret key. To facilitate
discussion, a hash function is informally defined as follows.

9.1 Definition A hash function (in the unrestricted sense) is a function hwhich has, as a min-
imum, the following two properties:

1. compression — h maps an input x of arbitrary finite bitlength, to an output h(x) of
fixed bitlength n.

2. ease of computation — given h and an input x, h(x) is easy to compute.
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§9.2 Classification and framework 323

As defined here, hash function implies an unkeyed hash function. On occasion when
discussion is at a generic level, this term is abused somewhat to mean both unkeyed and
keyed hash functions; hopefully ambiguity is limited by context.

For actual use, a more goal-oriented classification of hash functions (beyond keyed vs.
unkeyed) is necessary, based on further properties they provide and reflecting requirements
of specific applications. Of the numerous categories in such a functional classification, two
types of hash functions are considered in detail in this chapter:

1. modification detection codes (MDCs)
Also known as manipulation detection codes, and less commonly as message integri-
ty codes (MICs), the purpose of an MDC is (informally) to provide a representative
image or hash of a message, satisfying additional properties as refined below. The
end goal is to facilitate, in conjunction with additional mechanisms (see §9.6.4), data
integrity assurances as required by specific applications. MDCs are a subclass of un-
keyed hash functions, and themselves may be further classified; the specific classes
of MDCs of primary focus in this chapter are (cf. Definitions 9.3 and 9.4):

(i) one-way hash functions (OWHFs): for these, finding an input which hashes to
a pre-specified hash-value is difficult;

(ii) collision resistant hash functions (CRHFs): for these, finding any two inputs
having the same hash-value is difficult.

2. message authentication codes (MACs)
The purpose of a MAC is (informally) to facilitate, without the use of any additional
mechanisms, assurances regarding both the source of a message and its integrity (see
§9.6.3). MACs have two functionally distinct parameters, a message input and a se-
cret key; they are a subclass of keyed hash functions (cf. Definition 9.7).

Figure 9.1 illustrates this simplified classification. Additional applications of unkeyed
hash functions are noted in §9.2.6. Additional applications of keyed hash functions in-
clude use in challenge-response identification protocols for computing responses which are
a function of both a secret key and a challenge message; and for key confirmation (Defini-
tion 12.7). Distinction should be made between a MAC algorithm, and the use of an MDC
with a secret key included as part of its message input (see §9.5.2).

It is generally assumed that the algorithmic specification of a hash function is public
knowledge. Thus in the case of MDCs, given a message as input, anyone may compute the
hash-result; and in the case of MACs, given a message as input, anyone with knowledge of
the key may compute the hash-result.

9.2.2 Basic properties and definitions

To facilitate further definitions, three potential properties are listed (in addition to ease of
computation and compression as per Definition 9.1), for an unkeyed hash function h with
inputs x, x′ and outputs y, y′.

1. preimage resistance — for essentially all pre-specified outputs, it is computationally
infeasible to find any input which hashes to that output, i.e., to find any preimage x′

such thath(x′) = y when given any y for which a corresponding input is not known.1

2. 2nd-preimage resistance — it is computationally infeasible to find any second input
which has the same output as any specified input, i.e., givenx, to find a 2nd-preimage
x′ 6= x such that h(x) = h(x′).

1This acknowledges that an adversary may easily precompute outputs for any small set of inputs, and thereby
invert the hash function trivially for such outputs (cf. Remark 9.35).
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Figure 9.1: Simplified classification of cryptographic hash functions and applications.

3. collision resistance — it is computationally infeasible to find any two distinct inputs
x, x′ which hash to the same output, i.e., such that h(x) = h(x′). (Note that here
there is free choice of both inputs.)

Here and elsewhere, the terms “easy” and “computationally infeasible” (or “hard”) are
intentionally left without formal definition; it is intended they be interpreted relative to an
understood frame of reference. “Easy” might mean polynomial time and space; or more
practically, within a certain number of machine operations or time units – perhaps seconds
or milliseconds. A more specific definition of “computationally infeasible” might involve
super-polynomial effort; require effort far exceeding understood resources; specify a lower
bound on the number of operations or memory required in terms of a specified security pa-
rameter; or specify the probability that a property is violated be exponentially small. The
properties as defined above, however, suffice to allow practical definitions such as Defini-
tions 9.3 and 9.4 below.

9.2 Note (alternate terminology) Alternate terms used in the literature are as follows: preim-
age resistant ≡ one-way (cf. Definition 9.9); 2nd-preimage resistance ≡ weak collision re-
sistance; collision resistance ≡ strong collision resistance.

For context, one motivation for each of the three major properties above is now given.
Consider a digital signature scheme wherein the signature is applied to the hash-value h(x)
rather than the message x. Here h should be an MDC with 2nd-preimage resistance, oth-
erwise, an adversary C may observe the signature of some party A on h(x), then find an
x′ such that h(x) = h(x′), and claim that A has signed x′. If C is able to actually choose
the message which A signs, then C need only find a collision pair (x, x′) rather than the
harder task of finding a second preimage of x; in this case, collision resistance is also nec-
essary (cf. Remark 9.93). Less obvious is the requirement of preimage resistance for some
public-key signature schemes; consider RSA (Chapter 11), where party A has public key
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§9.2 Classification and framework 325

(e, n). C may choose a random value y, compute z = ye mod n, and (depending on the
particular RSA signature verification process used) claim that y is A’s signature on z. This
(existential) forgery may be of concern if C can find a preimage x such that h(x) = z, and
for which x is of practical use.

9.3 Definition A one-way hash function (OWHF) is a hash function h as per Definition 9.1
(i.e., offering ease of computation and compression) with the following additional proper-
ties, as defined above: preimage resistance, 2nd-preimage resistance.

9.4 Definition A collision resistant hash function (CRHF) is a hash function h as per Defini-
tion 9.1 (i.e., offering ease of computation and compression) with the following additional
properties, as defined above: 2nd-preimage resistance, collision resistance (cf. Fact 9.18).

Although in practice a CRHF almost always has the additional property of preimage re-
sistance, for technical reasons (cf. Note 9.20) this property is not mandated in Definition 9.4.

9.5 Note (alternate terminology for OWHF, CRHF) Alternate terms used in the literature are
as follows: OWHF ≡ weak one-way hash function (but here preimage resistance is often
not explicitly considered); CRHF ≡ strong one-way hash function.

9.6 Example (hash function properties)

(i) A simple modulo-32 checksum (32-bit sum of all 32-bit words of a data string) is an
easily computed function which offers compression, but is not preimage resistant.

(ii) The function g(x) of Example 9.11 is preimage resistant but provides neither com-
pression nor 2nd-preimage resistance.

(iii) Example 9.13 presents a function with preimage resistance and 2nd-preimage resis-
tance (but not compression). �

9.7 Definition A message authentication code (MAC) algorithm is a family of functions hk
parameterized by a secret key k, with the following properties:

1. ease of computation — for a known function hk, given a value k and an input x,
hk(x) is easy to compute. This result is called the MAC-value or MAC.

2. compression — hk maps an input x of arbitrary finite bitlength to an output hk(x) of
fixed bitlength n.
Furthermore, given a description of the function family h, for every fixed allowable
value of k (unknown to an adversary), the following property holds:

3. computation-resistance — given zero or more text-MAC pairs (xi, hk(xi)), it is com-
putationally infeasible to compute any text-MAC pair (x, hk(x)) for any new input
x 6= xi (including possibly for hk(x) = hk(xi) for some i).

If computation-resistancedoes not hold, a MAC algorithm is subject to MAC forgery. While
computation-resistance implies the property of key non-recovery (it must be computation-
ally infeasible to recover k, given one or more text-MAC pairs (xi, hk(xi)) for that k), key
non-recovery does not imply computation-resistance (a key need not always actually be re-
covered to forge new MACs).

9.8 Remark (MAC resistance when key known) Definition 9.7 does not dictate whether MACs
need be preimage- and collision resistant for parties knowing the key k (as Fact 9.21 implies
for parties without k).
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326 Ch. 9 Hash Functions and Data Integrity

(i) Objectives of adversaries vs. MDCs

The objective of an adversary who wishes to “attack” an MDC is as follows:

(a) to attack a OWHF: given a hash-value y, find a preimage x such that y = h(x); or
given one such pair (x, h(x)), find a second preimage x′ such that h(x′) = h(x).

(b) to attack a CRHF: find any two inputs x, x′, such that h(x′) = h(x).

A CRHF must be designed to withstand standard birthday attacks (see Fact 9.33).

(ii) Objectives of adversaries vs. MACs

The corresponding objective of an adversary for a MAC algorithm is as follows:

(c) to attack a MAC: without prior knowledge of a key k, compute a new text-MAC pair
(x, hk(x)) for some text x 6= xi, given one or more pairs (xi, hk(xi)).

Computation-resistance here should hold whether the texts xi for which matching MACs
are available are given to the adversary, or may be freely chosen by the adversary. Similar
to the situation for signature schemes, the following attack scenarios thus exist for MACs,
for adversaries with increasing advantages:

1. known-text attack. One or more text-MAC pairs (xi, hk(xi)) are available.
2. chosen-text attack. One or more text-MAC pairs (xi, hk(xi)) are available for xi

chosen by the adversary.
3. adaptive chosen-text attack. The xi may be chosen by the adversary as above, now

allowing successive choices to be based on the results of prior queries.

As a certificational checkpoint, MACs should withstand adaptive chosen-text attack regard-
less of whether such an attack may actually be mounted in a particular environment. Some
practical applications may limit the number of interactions allowed over a fixed period of
time, or may be designed so as to compute MACs only for inputs created within the appli-
cation itself; others may allow access to an unlimited number of text-MAC pairs, or allow
MAC verification of an unlimited number of messages and accept any with a correct MAC
for further processing.

(iii) Types of forgery (selective, existential)

When MAC forgery is possible (implying the MAC algorithm has been technically de-
feated), the severity of the practical consequences may differ depending on the degree of
control an adversary has over the value x for which a MAC may be forged. This degree is
differentiated by the following classification of forgeries:

1. selective forgery – attacks whereby an adversary is able to produce a new text-MAC
pair for a text of his choice (or perhaps partially under his control). Note that here the
selected value is the text for which a MAC is forged, whereas in a chosen-text attack
the chosen value is the text of a text-MAC pair used for analytical purposes (e.g., to
forge a MAC on a distinct text).

2. existential forgery – attacks whereby an adversary is able to produce a new text-MAC
pair, but with no control over the value of that text.

Key recovery of the MAC key itself is the most damaging attack, and trivially allows se-
lective forgery. MAC forgery allows an adversary to have a forged text accepted as authen-
tic. The consequences may be severe even in the existential case. A classic example is the
replacement of a monetary amount known to be small by a number randomly distributed
between 0 and 232 − 1. For this reason, messages whose integrity or authenticity is to be
verified are often constrained to have pre-determined structure or a high degree of verifiable
redundancy, in an attempt to preclude meaningful attacks.
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§9.2 Classification and framework 327

Analogously to MACs, attacks on MDC schemes (primarily 2nd-preimage and colli-
sion attacks) may be classified as selective or existential. If the message can be partially
controlled, then the attack may be classified as partially selective (e.g., see §9.7.1(iii)).

9.2.3 Hash properties required for specific applications

Because there may be costs associated with specific properties – e.g., CRHFs are in gen-
eral harder to construct than OWHFs and have hash-values roughly twice the bitlength – it
should be understood which properties are actually required for particular applications, and
why. Selected techniques whereby hash functions are used for data integrity, and the cor-
responding properties required thereof by these applications, are summarized in Table 9.1.

In general, an MDC should be a CRHF if an untrusted party has control over the exact
content of hash function inputs (see Remark 9.93); a OWHF suffices otherwise, including
the case where there is only a single party involved (e.g., a store-and-retrieve application).
Control over precise format of inputs may be eliminated by introducing into the message
randomization that is uncontrollable by one or both parties. Note, however, that data in-
tegrity techniques based on a shared secret key typically involve mutual trust and do not
address non-repudiation; in this case, collision resistance may or may not be a requirement.

Hash properties required→ Preimage 2nd- Collision Details
Integrity application ↓ resistant preimage resistant

MDC + asymmetric signature yes yes yes† page 324
MDC + authentic channel yes yes† page 364
MDC + symmetric encryption page 365
hash for one-way password file yes page 389
MAC (key unknown to attacker) yes yes yes† page 326
MAC (key known to attacker) yes‡ page 325

Table 9.1: Resistance properties required for specified data integrity applications.
†Resistance required if attacker is able to mount a chosen message attack.
‡Resistance required in rare case of multi-cast authentication (see page 378).

9.2.4 One-way functions and compression functions

Related to Definition 9.3 of a OWHF is the following, which is unrestrictive with respect
to a compression property.

9.9 Definition A one-way function (OWF) is a function f such that for each x in the domain of
f , it is easy to compute f(x); but for essentially all y in the range of f , it is computationally
infeasible to find any x such that y = f(x).

9.10 Remark (OWF vs. domain-restricted OWHF) A OWF as defined here differs from a
OWHF with domain restricted to fixed-size inputs in that Definition 9.9 does not require
2nd-preimage resistance. Many one-way functions are, in fact, non-compressing, in which
case most image elements have unique preimages, and for these 2nd-preimage resistance
holds vacuously – making the difference minor (but see Example 9.11).
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328 Ch. 9 Hash Functions and Data Integrity

9.11 Example (one-way functions and modular squaring) The squaring of integers modulo a
prime p, e.g., f(x) = x2− 1 mod p, behaves in many ways like a random mapping. How-
ever, f(x) is not a OWF because finding square roots modulo primes is easy (§3.5.1). On the
other hand, g(x) = x2 mod n is a OWF (Definition 9.9) for appropriate randomly chosen
primes p and q where n = pq and the factorization of n is unknown, as finding a preimage
(i.e., computing a square root mod n) is computationally equivalent to factoring (Fact 3.46)
and thus intractable. Nonetheless, finding a 2nd-preimage, and, therefore, collisions, is triv-
ial (given x, −x yields a collision), and thus g fits neither the definition of a OWHF nor a
CRHF with domain restricted to fixed-size inputs. �

9.12 Remark (candidate one-way functions) There are, in fact, no known instances of functions
which are provably one-way (with no assumptions); indeed, despite known hash function
constructions which are provably as secure as NP-complete problems, there is no assur-
ance the latter are difficult. All instances of “one-way functions” to date should thus more
properly be qualified as “conjectured” or “candidate” one-way functions. (It thus remains
possible, although widely believed most unlikely, that one-way functions do not exist.) A
proof of existence would establish P 6= NP, while non-existence would have devastating
cryptographic consequences (see page 377), although not directly implying P = NP.

Hash functions are often used in applications (cf. §9.2.6) which require the one-way
property, but not compression. It is, therefore, useful to distinguish three classes of func-
tions (based on the relative size of inputs and outputs):

1. (general) hash functions. These are functions as per Definition 9.1, typically with ad-
ditional one-way properties, which compress arbitrary-length inputs to n-bit outputs.

2. compression functions (fixed-size hash functions). These are functions as per Defi-
nition 9.1, typically with additional one-way properties, but with domain restricted
to fixed-size inputs – i.e., compressingm-bit inputs to n-bit outputs,m > n.

3. non-compressing one-way functions. These are fixed-size hash functions as above,
except that n = m. These include one-way permutations, and can be more explicitly
described as computationally non-invertible functions.

9.13 Example (DES-based OWF) A one-way function can be constructed from DES or any
block cipher E which behaves essentially as a random function (see Remark 9.14), as fol-
lows: f(x) = Ek(x)⊕x, for any fixed known key k. The one-way nature of this construc-
tion can be proven under the assumption that E is a random permutation. An intuitive ar-
gument follows. For any choice of y, finding any x (and key k) such that Ek(x)⊕x = y is
difficult because for any chosen x, Ek(x) will be essentially random (for any key k) and
thus so will Ek(x)⊕x; hence, this will equal y with no better than random chance. By
similar reasoning, if one attempts to use decryption and chooses an x, the probability that
E−1k (x⊕y) = x is no better than random chance. Thus f(x) appears to be a OWF. While
f(x) is not a OWHF (it handles only fixed-length inputs), it can be extended to yield one
(see Algorithm 9.41). �

9.14 Remark (block ciphers and random functions) Regarding random functions and their
properties, see §2.1.6. If a block cipher behaved as a random function, then encryption and
decryption would be equivalent to looking up values in a large table of random numbers;
for a fixed input, the mapping from a key to an output would behave as a random mapping.
However, block ciphers such as DES are bijections, and thus at best exhibit behavior more
like random permutations than random functions.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§9.2 Classification and framework 329

9.15 Example (one-wayness w.r.t. two inputs) Consider f(x, k) = Ek(x), where E repre-
sents DES. This is not a one-way function of the joint input (x, k), because given any func-
tion value y = f(x, k), one can choose any key k′ and compute x′ = E−1k′ (y) yielding
a preimage (x′, k′). Similarly, f(x, k) is not a one-way function of x if k is known, as
given y = f(x, k) and k, decryption of y using k yields x. (However, a “black-box” which
computes f(x, k) for fixed, externally-unknown k is a one-way function of x.) In contrast,
f(x, k) is a one-way function of k; given y = f(x, k) and x, it is not known how to find
a preimage k in less than about 255 operations. (This latter concept is utilized in one-time
digital signature schemes – see §11.6.2.) �

9.16 Example (OWF - multiplication of large primes) For appropriate choices of primes p and
q, f(p, q) = pq is a one-way function: given p and q, computing n = pq is easy, but given
n, finding p and q, i.e., integer factorization, is difficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many one-
way functions, this function f does not have properties resembling a “random” function.�

9.17 Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primes p and any element α ∈ Z∗p of sufficiently large multiplicative order (e.g., a gen-
erator), f(x) = αx mod p is a one-way function. (For example, p must not be such that
all the prime divisors of p − 1 are small, otherwise the discrete log problem is feasible by
the Pohlig-Hellman algorithm of §3.6.4.) f(x) is easily computed given α, x, and p using
the square-and-multiply technique (Algorithm 2.143), but for most choices p it is difficult,
given (y, p, α), to find an x in the range 0 ≤ x ≤ p − 2 such that αx mod p = y, due to
the apparent intractability of the discrete logarithm problem (§3.6). Of course, for specific
values of f(x) the function can be inverted trivially. For example, the respective preimages
of 1 and−1 are known to be 0 and (p− 1)/2, and by computing f(x) for any small set of
values for x (e.g., x = 1, 2, . . . , 10), these are also known. However, for essentially all y
in the range, the preimage of y is difficult to find. �

9.2.5 Relationships between properties

In this section several relationships between the hash function properties stated in the pre-
ceding section are examined.

9.18 Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Suppose h has collision resistance. Fix an input xj . If h does not have 2nd-
preimage resistance, then it is feasible to find a distinct input xi such that h(xi) = h(xj),
in which case (xi, xj) is a pair of distinct inputs hashing to the same output, contradicting
collision resistance.

9.19 Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”
is generally taken to mean preimage resistant, in the hash function literature it is some-
times also used to imply that a function is 2nd-preimage resistant or computationally non-
invertible. (Computationally non-invertible is a more explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or more
preimages exist, a function fails to be computationally non-invertible if any one can be
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee preimage-
resistance (Note 9.20), nor does preimage resistance guarantee 2nd-preimage resistance
(Example 9.11); see also Remark 9.10. An attempt is thus made to avoid unqualified use of
the term “one-way”.
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9.20 Note (collision resistance does not guarantee preimage resistance) Let g be a hash func-
tion which is collision resistant and maps arbitrary-length inputs to n-bit outputs. Consider
the function h defined as (here and elsewhere, || denotes concatenation):

h(x) =

{
1 || x, if x has bitlength n
0 || g(x), otherwise.

Then h is an (n + 1)-bit hash function which is collision resistant but not preimage resis-
tant. As a simpler example, the identity function on fixed-length inputs is collision and 2nd-
preimage resistant (preimages are unique) but not preimage resistant. While such patholog-
ical examples illustrate that collision resistance does not guarantee the difficulty of finding
preimages of specific (or even most) hash outputs, for most CRHFs arising in practice it
nonetheless appears reasonable to assume that collision resistance does indeed imply preim-
age resistance.

9.21 Fact (implications of MAC properties) Let hk be a keyed hash function which is a MAC
algorithm per Definition 9.7 (and thus has the property of computation-resistance). Then
hk is, against chosen-text attack by an adversary without knowledge of the key k, (i) both
2nd-preimage resistant and collision resistant; and (ii) preimage resistant (with respect to
the hash-input).

Justification. For (i), note that computation-resistance implies hash-results should not even
be computable by those without secret key k. For (ii), by way of contradiction, assume
h were not preimage resistant. Then recovery of the preimage x for a randomly selected
hash-output y violates computation-resistance.

9.2.6 Other hash function properties and applications

Most unkeyed hash functions commonly found in practice were originally designed for the
purpose of providing data integrity (see §9.6), including digital fingerprinting of messages
in conjunction with digital signatures (§9.6.4). The majority of these are, in fact, MDCs
designed to have preimage, 2nd-preimage, or collision resistance properties. Because one-
way functions are a fundamental cryptographic primitive, many of these MDCs, which typ-
ically exhibit behavior informally equated with one-wayness and randomness, have been
proposed for use in various applications distinct from data integrity, including, as discussed
below:

1. confirmation of knowledge
2. key derivation
3. pseudorandom number generation

Hash functions used for confirmation of knowledge facilitate commitment to data values,
or demonstrate possession of data, without revealing such data itself (until possibly a later
point in time); verification is possible by parties in possession of the data. This resembles
the use of MACs where one also essentially demonstrates knowledge of a secret (but with
the demonstration bound to a specific message). The property of hash functions required
is preimage resistance (see also partial-preimage resistance below). Specific examples in-
clude use in password verification using unencrypted password-image files (Chapter 10);
symmetric-key digital signatures (Chapter 11); key confirmation in authenticated key es-
tablishment protocols (Chapter 12); and document-dating or timestamping by hash-code
registration (Chapter 13).

In general, use of hash functions for purposes other than which they were originally de-
signed requires caution, as such applications may require additional properties (see below)
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these functions were not designed to provide; see Remark 9.22. Unkeyed hash functions
having properties associated with one-way functions have nonetheless been proposed for a
wide range of applications, including as noted above:

• key derivation – to compute sequences of new keys from prior keys (Chapter 13). A
primary example is key derivation in point-of-sale (POS) terminals; here an impor-
tant requirement is that the compromise of currently active keys must not compromise
the security of previous transaction keys. A second example is in the generation of
one-time password sequences based on one-way functions (Chapter 10).
• pseudorandom number generation – to generate sequences of numbers which have

various properties of randomness. (A pseudorandomnumber generator can be used to
construct a symmetric-key block cipher, among other things.) Due to the difficulty of
producing cryptographically strong pseudorandom numbers (see Chapter 5), MDCs
should not be used for this purpose unless the randomness requirements are clearly
understood, and the MDC is verified to satisfy these.

For the applications immediately above, rather than hash functions, the cryptographic prim-
itive which is needed may be a pseudorandom function (or keyed pseudorandom function).

9.22 Remark (use of MDCs) Many MDCs used in practice may appear to satisfy additional
requirements beyond those for which they were originally designed. Nonetheless, the use
of arbitrary hash functions cannot be recommended for any applications without careful
analysis precisely identifying both the critical properties required by the application and
those provided by the function in question (cf. §9.5.2).

Additional properties of one-way hash functions

Additional properties of one-way hash functions called for by the above-mentioned appli-
cations include the following.

1. non-correlation. Input bits and output bits should not be correlated. Related to this,
an avalanche property similar to that of good block ciphers is desirable whereby every
input bit affects every output bit. (This rules out hash functions for which preimage
resistance fails to imply 2nd-preimage resistance simply due to the function effec-
tively ignoring a subset of input bits.)

2. near-collision resistance. It should be hard to find any two inputs x, x′ such that h(x)
and h(x′) differ in only a small number of bits.

3. partial-preimage resistance or local one-wayness. It should be as difficult to recover
any substring as to recover the entire input. Moreover, even if part of the input is
known, it should be difficult to find the remainder (e.g., if t input bits remain un-
known, it should take on average 2t−1 hash operations to find these bits.)

Partial preimage resistance is an implicit requirement in some of the proposed applications
of §9.5.2. One example where near-collision resistance is necessary is when only half of
the output bits of a hash function are used.

Many of these properties can be summarized as requirements that there be neither lo-
cal nor global statistical weaknesses; the hash function should not be weaker with respect
to some parts of its input or output than others, and all bits should be equally hard. Some
of these may be called certificational properties – properties which intuitively appear de-
sirable, although they cannot be shown to be directly necessary.
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9.3 Basic constructions and general results

9.3.1 General model for iterated hash functions

Most unkeyed hash functions h are designed as iterative processes which hash arbitrary-
length inputs by processing successive fixed-size blocks of the input, as illustrated in Fig-
ure 9.2.

output
fixed length

preprocessing

Hi

original input x

input x = x1x2 · · ·xt
formatted

compression

xi

Hi−1

iterated
compression

(a) high-level view (b) detailed view

transformation
optional output

output

append padding bits

append length block

arbitrary length input

function

iterated processing

function f

g

output h(x) = g(Ht)

f

H0 = IV

hash function h

Ht

Figure 9.2: General model for an iterated hash function.

A hash input x of arbitrary finite length is divided into fixed-length r-bit blocks xi. This
preprocessing typically involves appending extra bits (padding) as necessary to attain an
overall bitlength which is a multiple of the blocklength r, and often includes (for security
reasons – e.g., see Algorithm 9.26) a block or partial block indicating the bitlength of the
unpadded input. Each block xi then serves as input to an internal fixed-size hash function
f , the compression function of h, which computes a new intermediate result of bitlength n
for some fixed n, as a function of the previous n-bit intermediate result and the next input
blockxi. LettingHi denote the partial result after stage i, the general process for an iterated
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hash function with input x = x1x2 . . . xt can be modeled as follows:

H0 = IV ; Hi = f(Hi−1, xi), 1 ≤ i ≤ t; h(x) = g(Ht). (9.1)

Hi−1 serves as the n-bit chaining variable between stage i − 1 and stage i, and H0 is a
pre-defined starting value or initializing value (IV). An optional output transformation g
(see Figure 9.2) is used in a final step to map the n-bit chaining variable to anm-bit result
g(Ht); g is often the identity mapping g(Ht) = Ht.

Particular hash functions are distinguished by the nature of the preprocessing, com-
pression function, and output transformation.

9.3.2 General constructions and extensions

To begin, an example demonstrating an insecure construction is given. Several secure gen-
eral constructions are then discussed.

9.23 Example (insecure trivial extension of OWHF to CRHF) In the case that an iterated
OWHF h yielding n-bit hash-values is not collision resistant (e.g., when a 2n/2 birthday
collision attack is feasible – see §9.7.1) one might propose constructing from h a CRHF
using as output the concatenation of the last two n-bit chaining variables, so that a t-block
message has hash-value Ht−1||Ht rather than Ht. This is insecure as the final message
block xt can be held fixed along with Ht, reducing the problem to finding a collision on
Ht−1 for h. �

Extending compression functions to hash functions

Fact 9.24 states an important relationship between collision resistant compression functions
and collision resistant hash functions. Not only can the former be extended to the latter, but
this can be done efficiently using Merkle’s meta-method of Algorithm 9.25 (also called the
Merkle-Damgård construction). This reduces the problem of finding such a hash function
to that of finding such a compression function.

9.24 Fact (extending compression functions) Any compression function f which is collision
resistant can be extended to a collision resistant hash function h (taking arbitrary length
inputs).

9.25 Algorithm Merkle’s meta-method for hashing

INPUT: compression function f which is collision resistant.
OUTPUT: unkeyed hash function h which is collision resistant.

1. Suppose f maps (n+ r)-bit inputs to n-bit outputs (for concreteness, consider n =
128 and r = 512). Construct a hash function h from f , yielding n-bit hash-values,
as follows.

2. Break an input x of bitlength b into blocks x1x2 . . . xt each of bitlength r, padding
out the last block xt with 0-bits if necessary.

3. Define an extra final block xt+1, the length-block, to hold the right-justified binary
representation of b (presume that b < 2r).

4. Letting 0j represent the bitstring of j 0’s, define the n-bit hash-value of x to be
h(x) = Ht+1 = f(Ht || xt+1) computed from:

H0 = 0
n; Hi = f(Hi−1 || xi), 1 ≤ i ≤ t+ 1.
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The proof that the resulting function h is collision resistant follows by a simple argu-
ment that a collision for h would imply a collision for f for some stage i. The inclusion of
the length-block, which effectively encodes all messages such that no encoded input is the
tail end of any other encoded input, is necessary for this reasoning. Adding such a length-
block is sometimes called Merkle-Damgård strengthening (MD-strengthening), which is
now stated separately for future reference.

9.26 Algorithm MD-strengthening

Before hashing a message x = x1x2 . . . xt (where xi is a block of bitlength r appropriate
for the relevant compression function) of bitlength b, append a final length-block, xt+1,
containing the (say) right-justified binary representation of b. (This presumes b < 2r.)

Cascading hash functions

9.27 Fact (cascading hash functions) If either h1 or h2 is a collision resistant hash function,
then h(x) = h1(x) || h2(x) is a collision resistant hash function.

If both h1 and h2 in Fact 9.27 are n-bit hash functions, then h produces 2n-bit out-
puts; mapping this back down to an n-bit output by an n-bit collision-resistant hash func-
tion (h1 and h2 are candidates) would leave the overall mapping collision-resistant. If h1
and h2 are independent, then finding a collision for h requires finding a collision for both
simultaneously (i.e., on the same input), which one could hope would require the product of
the efforts to attack them individually. This provides a simple yet powerful way to (almost
surely) increase strength using only available components.

9.3.3 Formatting and initialization details

9.28 Note (data representation) As hash-values depend on exact bitstrings, different data rep-
resentations (e.g., ASCII vs. EBCDIC) must be converted to a common format before com-
puting hash-values.

(i) Padding and length-blocks

For block-by-block hashing methods, extra bits are usually appended to a hash input string
before hashing, to pad it out to a number of bits which make it a multiple of the relevant
block size. The padding bits need not be transmitted/stored themselves, provided the sender
and recipient agree on a convention.

9.29 Algorithm Padding Method 1

INPUT: data x; bitlength n giving blocksize of data input to processing stage.
OUTPUT: padded data x′, with bitlength a multiple of n.

1. Append to x as few (possibly zero) 0-bits as necessary to obtain a string x′ whose
bitlength is a multiple of n.

9.30 Algorithm Padding Method 2

INPUT: data x; bitlength n giving blocksize of data input to processing stage.
OUTPUT: padded data x′, with bitlength a multiple of n.

1. Append to x a single 1-bit.
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2. Then append as few (possibly zero) 0-bits as necessary to obtain a string x′ whose
bitlength is a multiple of n.

9.31 Remark (ambiguous padding) Padding Method 1 is ambiguous – trailing 0-bits of the
original data cannot be distinguished from those added during padding. Such methods are
acceptable if the length of the data (before padding) is known by the recipient by other
means. Padding Method 2 is not ambiguous – each padded stringx′ corresponds to a unique
unpadded string x. When the bitlength of the original data x is already a multiple of n,
Padding Method 2 results in the creation of an extra block.

9.32 Remark (appended length blocks) Appending a logical length-block prior to hashing
prevents collision and pseudo-collision attacks which find second messages of different
length, including trivial collisions for random IVs (Example 9.96), long-message attacks
(Fact 9.37), and fixed-point attacks (page 374). This further justifies the use of MD-
strengthening (Algorithm 9.26).

Trailing length-blocks and padding are often combined. For Padding Method 2, a len-
gth field of pre-specified bitlengthwmay replace the finalw 0-bits padded if padding would
otherwise causew or more redundant such bits. By pre-agreed convention, the length field
typically specifies the bitlength of the original message. (If used instead to specify the num-
ber of padding bits appended, deletion of leading blocks cannot be detected.)

(ii) IVs

Whether the IV is fixed, is randomly chosen per hash function computation, or is a function
of the data input, the same IV must be used to generate and verify a hash-value. If not known
a priori by the verifier, it must be transferred along with the message. In the latter case, this
generally should be done with guaranteed integrity (to cut down on the degree of freedom
afforded to adversaries, in line with the principle that hash functions should be defined with
a fixed or a small set of allowable IVs).

9.3.4 Security objectives and basic attacks

As a framework for evaluating the computational security of hash functions, the objectives
of both the hash function designer and an adversary should be understood. Based on Defi-
nitions 9.3, 9.4, and 9.7, these are summarized in Table 9.2, and discussed below.

Hash type Design goal Ideal strength Adversary’s goal

OWHF preimage resistance; 2n produce preimage;
2nd-preimage resistance 2n find 2nd input, same image

CRHF collision resistance 2n/2 produce any collision
MAC key non-recovery; 2t deduce MAC key;

computation resistance Pf = max(2
−t, 2−n) produce new (msg, MAC)

Table 9.2: Design objectives for n-bit hash functions (t-bit MAC key). Pf denotes the probability
of forgery by correctly guessing a MAC.

Given a specific hash function, it is desirable to be able to prove a lower bound on the com-
plexity of attacking it under specified scenarios, with as few or weak a set of assumptions as
possible. However, such results are scarce. Typically the best guidance available regarding
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the security of a particular hash function is the complexity of the (most efficient) applicable
known attack, which gives an upper bound on security. An attack of complexity 2t is one
which requires approximately 2t operations, each being an appropriate unit of work (e.g.,
one execution of the compression function or one encryption of an underlying cipher). The
storage complexity of an attack (i.e., storage required) should also be considered.

(i) Attacks on the bitsize of an MDC

Given a fixed message xwith n-bit hash h(x), a naive method for finding an input colliding
with x is to pick a random bitstring x′ (of bounded bitlength) and check if h(x′) = h(x).
The cost may be as little as one compression function evaluation, and memory is negligi-
ble. Assuming the hash-code approximates a uniform random variable, the probability of a
match is 2−n. The implication of this is Fact 9.33, which also indicates the effort required
to find collisions if x may itself be chosen freely. Definition 9.34 is motivated by the de-
sign goal that the best possible attack should require no less than such levels of effort, i.e.,
essentially brute force.

9.33 Fact (basic hash attacks) For an n-bit hash function h, one may expect a guessing attack
to find a preimage or second preimage within 2n hashing operations. For an adversary able
to choose messages, a birthday attack (see §9.7.1) allows colliding pairs of messages x, x′

with h(x) = h(x′) to be found in about 2n/2 operations, and negligible memory.

9.34 Definition An n-bit unkeyed hash function has ideal security if both: (1) given a hash
output, producing each of a preimage and a 2nd-preimage requires approximately 2n oper-
ations; and (2) producing a collision requires approximately 2n/2 operations.

(ii) Attacks on the MAC key space

An attempt may be made to determine a MAC key using exhaustive search. With a sin-
gle known text-MAC pair, an attacker may compute the n-bit MAC on that text under all
possible keys, and then check which of the computed MAC-values agrees with that of the
known pair. For a t-bit key space this requires 2t MAC operations, after which one expects
1+2t−n candidate keys remain. Assuming the MAC behaves as a random mapping, it can
be shown that one can expect to reduce this to a unique key by testing the candidate keys us-
ing just over t/n text-MAC pairs. Ideally, a MAC key (or information of cryptographically
equivalent value) would not be recoverable in fewer than 2t operations.

As a probabilistic attack on the MAC key space distinct from key recovery, note that
for a t-bit key and a fixed input, a randomly guessed key will yield a correct (n-bit) MAC
with probability≈ 2−t for t < n.

(iii) Attacks on the bitsize of a MAC

MAC forgery involves producing any input x and the corresponding correct MAC without
having obtained the latter from anyone with knowledge of the key. For an n-bit MAC al-
gorithm, either guessing a MAC for a given input, or guessing a preimage for a given MAC
output, has probability of success about 2−n, as for an MDC. A difference here, however,
is that guessed MAC-values cannot be verified off-line without known text-MAC pairs –
either knowledge of the key, or a “black-box” which provides MACs for given inputs (i.e.,
a chosen-text scenario) is required. Since recovering the MAC key trivially allows forgery,
an attack on the t-bit key space (see above) must be also be considered here. Ideally, an ad-
versary would be unable to produce new (correct) text-MAC pairs (x, y) with probability
significantly better thanmax(2−t, 2−n), i.e., the better of guessing a key or a MAC-value.
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(iv) Attacks using precomputations, multiple targets, and long messages

9.35 Remark (precomputation of hash values) For both preimage and second preimage attacks,
an opponent who precomputes a large number of hash function input-output pairs may trade
off precomputation plus storage for subsequent attack time. For example, for a 64-bit hash
value, if one randomly selects 240 inputs, then computes their hash values and stores (hash
value, input) pairs indexed by hash value, this precomputation of O(240) time and space
allows an adversary to increase the probability of finding a preimage (per one subsequent
hash function computation) from 2−64 to 2−24. Similarly, the probability of finding a sec-
ond preimage increases to r times its original value (when no stored pairs are known) if r
input-output pairs of a OWHF are precomputed and tabulated.

9.36 Remark (effect of parallel targets for OWHFs) In a basic attack, an adversary seeks a sec-
ond preimage for one fixed target (the image computed from a first preimage). If there are r
targets and the goal is to find a second preimage for any one of these r, then the probability
of success increases to r times the original probability. One implication is that when using
hash functions in conjunction with keyed primitives such as digital signatures, repeated use
of the keyed primitive may weaken the security of the combined mechanism in the follow-
ing sense. If r signed messages are available, the probability of a hash collision increases
r-fold (cf. Remark 9.35), and colliding messages yield equivalent signatures, which an op-
ponent could not itself compute off-line.

Fact 9.37 reflects a related attack strategy of potential concern when using iterated hash
functions on long messages.

9.37 Fact (long-message attack for 2nd-preimage) Let h be an iterated n-bit hash function with
compression function f (as in equation (9.1), without MD-strengthening). Let x be a mes-
sage consisting of t blocks. Then a 2nd-preimage for h(x) can be found in time (2n/s)+ s
operations of f , and in space n(s+lg(s)) bits, for any s in the range 1 ≤ s ≤ min(t, 2n/2).

Justification. The idea is to use a birthday attack on the intermediate hash-results; a sketch
for the choice s = t follows. Compute h(x), storing (Hi, i) for each of the t intermediate
hash-resultsHi corresponding to the t input blocks xi in a table such that they may be later
indexed by value. Compute h(z) for random choices z, checking for a collision involving
h(z) in the table, until one is found; approximately 2n/s values z will be required, by the
birthday paradox. Identify the index j from the table responsible for the collision; the input
zxj+1xj+2 . . . xt then collides with x.

9.38 Note (implication of long messages) Fact 9.37 implies that for “long” messages, a 2nd-
preimage is generally easier to find than a preimage (the latter takes at most 2n operations),
becoming moreso with the length of x. For t ≥ 2n/2, computation is minimized by choos-
ing s = 2n/2 in which case a 2nd-preimage costs about 2n/2 executions of f (comparable
to the difficulty of finding a collision).

9.3.5 Bitsizes required for practical security

Suppose that a hash function producesn-bit hash-values, and as a representative benchmark
assume that 280 (but not fewer) operations is acceptably beyond computational feasibility.2

Then the following statements may be made regarding n.

2Circa 1996, 240 simple operations is quite feasible, and 256 is considered quite reachable by those with suf-
ficient motivation (possibly using parallelization or customized machines).
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1. For a OWHF, n ≥ 80 is required. Exhaustive off-line attacks require at most 2n

operations; this may be reduced with precomputation (Remark 9.35).
2. For a CRHF, n ≥ 160 is required. Birthday attacks are applicable (Fact 9.33).
3. For a MAC, n ≥ 64 along with a MAC key of 64-80 bits is sufficient for most ap-

plications and environments (cf. Table 9.1). If a single MAC key remains in use,
off-line attacks may be possible given one or more text-MAC pairs; but for a proper
MAC algorithm, preimage and 2nd-preimage resistance (as well as collision resis-
tance) should follow directly from lack of knowledge of the key, and thus security
with respect to such attacks should depend on the keysize rather than n. For attacks
requiring on-line queries, additional controls may be used to limit the number of such
queries, constrain the format of MAC inputs, or prevent disclosure of MAC outputs
for random (chosen-text) inputs. Given special controls, values as small as n = 32 or
40 may be acceptable; but caution is advised, since even with one-time MAC keys,
the chance any randomly guessed MAC being correct is 2−n, and the relevant factors
are the total number of trials a system is subject to over its lifetime, and the conse-
quences of a single successful forgery.

These guidelines may be relaxed somewhat if a lower threshold of computational infeasi-
bility is assumed (e.g., 264 instead of 280). However, an additional consideration to be taken
into account is that for both a CRHF and a OWHF, not only can off-line attacks be carried
out, but these can typically be parallelized. Key search attacks against MACs may also be
parallelized.

9.4 Unkeyed hash functions (MDCs)

A move from general properties and constructions to specific hash functions is now made,
and in this section the subclass of unkeyed hash functions known as modification detection
codes (MDCs) is considered. From a structural viewpoint, these may be categorized based
on the nature of the operations comprising their internal compression functions. From this
viewpoint, the three broadest categories of iterated hash functions studied to date are hash
functions based on block ciphers, customized hash functions, and hash functions based on
modular arithmetic. Customized hash functions are those designed specifically for hashing,
with speed in mind and independent of other system subcomponents (e.g., block cipher or
modular multiplication subcomponents which may already be present for non-hashing pur-
poses).

Table 9.3 summarizes the conjectured security of a subset of the MDCs subsequently
discussed in this section. Similar to the case of block ciphers for encryption (e.g. 8- or 12-
round DES vs. 16-round DES), security of MDCs often comes at the expense of speed, and
tradeoffs are typically made. In the particular case of block-cipher-based MDCs, a provably
secure scheme of Merkle (see page 378) with rate 0.276 (see Definition 9.40) is known but
little-used, while MDC-2 is widely believed to be (but not provably) secure, has rate= 0.5,
and receives much greater attention in practice.

9.4.1 Hash functions based on block ciphers

A practical motivation for constructing hash functions from block ciphers is that if an effi-
cient implementation of a block cipher is already available within a system (either in hard-
ware or software), then using it as the central component for a hash function may provide
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↓Hash function n m Preimage Collision Comments

Matyas-Meyer-Oseasa n n 2n 2n/2 for keylength = n
MDC-2 (with DES)b 64 128 2 · 282 2 · 254 rate 0.5
MDC-4 (with DES) 64 128 2109 4 · 254 rate 0.25
Merkle (with DES) 106 128 2112 256 rate 0.276
MD4 512 128 2128 220 Remark 9.50
MD5 512 128 2128 264 Remark 9.52
RIPEMD-128 512 128 2128 264 –
SHA-1, RIPEMD-160 512 160 2160 280 –

aThe same strength is conjectured for Davies-Meyer and Miyaguchi-Preneel hash functions.
bStrength could be increased using a cipher with keylength equal to cipher blocklength.

Table 9.3: Upper bounds on strength of selected hash functions. n-bit message blocks are processed
to produce m-bit hash-values. Number of cipher or compression function operations currently be-
lieved necessary to find preimages and collisions are specified, assuming no underlying weaknesses
for block ciphers (figures for MDC-2 and MDC-4 account for DES complementation and weak key
properties). Regarding rate, see Definition 9.40.

the latter functionality at little additional cost. The (not always well-founded) hope is that
a good block cipher may serve as a building block for the creation of a hash function with
properties suitable for various applications.

Constructions for hash functions have been given which are “provably secure” assum-
ing certain ideal properties of the underlying block cipher. However, block ciphers do
not possess the properties of random functions (for example, they are invertible – see Re-
mark 9.14). Moreover, in practice block ciphers typically exhibit additional regularities
or weaknesses (see §9.7.4). For example, for a block cipher E, double encryption using
an encrypt-decrypt (E-D) cascade with keysK1, K2 results in the identity mapping when
K1 = K2. In summary, while various necessary conditions are known, it is unclear ex-
actly what requirements of a block cipher are sufficient to construct a secure hash function,
and properties adequate for a block cipher (e.g., resistance to chosen-text attack) may not
guarantee a good hash function.

In the constructions which follow, Definition 9.39 is used.

9.39 Definition An (n,r) block cipher is a block cipher defining an invertible function from
n-bit plaintexts to n-bit ciphertexts using an r-bit key. If E is such a cipher, then Ek(x)
denotes the encryption of x under key k.

Discussion of hash functions constructed from n-bit block ciphers is divided between
those producing single-length (n-bit) and double-length (2n-bit) hash-values, where single
and double are relative to the size of the block cipher output. Under the assumption that
computations of 264 operations are infeasible,3 the objective of single-length hash functions
is to provide a OWHF for ciphers of blocklength near n = 64, or to provide CRHFs for
cipher blocklengths near n = 128. The motivation for double-length hash functions is that
many n-bit block ciphers exist of size approximatelyn = 64, and single-length hash-codes
of this size are not collision resistant. For such ciphers, the goal is to obtain hash-codes of
bitlength 2n which are CRHFs.

In the simplest case, the size of the key used in such hash functions is approximately
the same as the blocklength of the cipher (i.e., n bits). In other cases, hash functions use

3The discussion here is easily altered for a more conservative bound, e.g., 280 operations as used in §9.3.5.
Here 264 is more convenient for discussion, due to the omnipresence of 64-bit block ciphers.
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larger (e.g., double-length) keys. Another characteristic to be noted in such hash functions
is the number of block cipher operations required to produce a hash output of blocklength
equal to that of the cipher, motivating the following definition.

9.40 Definition Let h be an iterated hash function constructed from a block cipher, with com-
pression function f which performs s block encryptions to process each successive n-bit
message block. Then the rate of h is 1/s.

The hash functions discussed in this section are summarized in Table 9.4. The Matyas-
Meyer-Oseas and MDC-2 algorithms are the basis, respectively, of the two generic hash
functions in ISO standard 10118-2, each allowing use of any n-bit block cipherE and pro-
viding hash-codes of bitlengthm ≤ n andm ≤ 2n, respectively.

Hash function (n, k,m) Rate

Matyas-Meyer-Oseas (n, k, n) 1
Davies-Meyer (n, k, n) k/n
Miyaguchi-Preneel (n, k, n) 1
MDC-2 (with DES) (64, 56, 128) 1/2
MDC-4 (with DES) (64, 56, 128) 1/4

Table 9.4: Summary of selected hash functions based on n-bit block ciphers. k = key bitsize (ap-
proximate); function yieldsm-bit hash-values.

(i) Single-length MDCs of rate 1

The first three schemes described below, and illustrated in Figure 9.3, are closely related
single-length hash functions based on block ciphers. These make use of the following pre-
defined components:

1. a generic n-bit block cipher EK parametrized by a symmetric keyK;
2. a function g which maps n-bit inputs to keysK suitable forE (if keys forE are also

of length n, g might be the identity function); and
3. a fixed (usually n-bit) initial value IV , suitable for use with E.

xi

Hi

xi

E

Hi

Matyas-Meyer-Oseas Miyaguchi-Preneel

Hi−1 g
Hi−1

g E

Hi−1

E

Hi

xi

Davies-Meyer

Figure 9.3: Three single-length, rate-one MDCs based on block ciphers.
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9.41 Algorithm Matyas-Meyer-Oseas hash

INPUT: bitstring x.
OUTPUT: n-bit hash-code of x.

1. Input x is divided into n-bit blocks and padded, if necessary, to complete last block.
Denote the padded message consisting of t n-bit blocks: x1x2 . . . xt. A constant n-
bit initial value IV must be pre-specified.

2. The output isHt defined by: H0 = IV ; Hi = Eg(Hi−1)(xi)⊕xi, 1 ≤ i ≤ t.

9.42 Algorithm Davies-Meyer hash

INPUT: bitstring x.
OUTPUT: n-bit hash-code of x.

1. Input x is divided into k-bit blocks where k is the keysize, and padded, if necessary,
to complete last block. Denote the padded message consisting of t k-bit blocks: x1x2
. . . xt. A constant n-bit initial value IV must be pre-specified.

2. The output isHt defined by: H0 = IV ; Hi = Exi(Hi−1)⊕Hi−1, 1 ≤ i ≤ t.

9.43 Algorithm Miyaguchi-Preneel hash

This scheme is identical to that of Algorithm 9.41, except the outputHi−1 from the previous
stage is also XORed to that of the current stage. More precisely,Hi is redefined as: H0 =
IV ; Hi = Eg(Hi−1)(xi)⊕xi⊕Hi−1, 1 ≤ i ≤ t.

9.44 Remark (dual schemes) The Davies-Meyer hash may be viewed as the ‘dual’ of the Mat-
yas-Meyer-Oseas hash, in the sense that xi and Hi−1 play reversed roles. When DES is
used as the block cipher in Davies-Meyer, the input is processed in 56-bit blocks (yield-
ing rate 56/64 < 1), whereas Matyas-Meyer-Oseas and Miyaguchi-Preneel process 64-bit
blocks.

9.45 Remark (black-box security) Aside from heuristic arguments as given in Example 9.13,
it appears that all three of Algorithms 9.41, 9.42, and 9.43 yield hash functions which are
provably secure under an appropriate “black-box” model (e.g., assumingE has the required
randomness properties, and that attacks may not make use of any special properties or in-
ternal details of E). “Secure” here means that finding preimages and collisions (in fact,
pseudo-preimages and pseudo-collisions – see §9.7.2) require on the order of 2n and 2n/2

n-bit block cipher operations, respectively. Due to their single-length nature, none of these
three is collision resistant for underlying ciphers of relatively small blocklength (e.g., DES,
which yields 64-bit hash-codes).

Several double-length hash functions based on block ciphers are considered next.

(ii) Double-length MDCs: MDC-2 and MDC-4

MDC-2 and MDC-4 are manipulation detection codes requiring 2 and 4, respectively, block
cipher operations per block of hash input. They employ a combination of either 2 or 4 itera-
tions of the Matyas-Meyer-Oseas (single-length) scheme to produce a double-length hash.
When used as originally specified, using DES as the underlying block cipher, they produce
128-bit hash-codes. The general construction, however, can be used with other block ci-
phers. MDC-2 and MDC-4 make use of the following pre-specified components:
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1. DES as the block cipher EK of bitlength n = 64 parameterized by a 56-bit keyK;
2. two functions g and g̃ which map 64-bit values U to suitable 56-bit DES keys as fol-

lows. For U = u1u2 . . . u64, delete every eighth bit starting with u8, and set the 2nd
and 3rd bits to ‘10’ for g, and ‘01’ for g̃:

g(U) = u1 1 0 u4u5u6u7u9u10 . . . u63.

g̃(U) = u1 0 1 u4u5u6u7u9u10 . . . u63.

(The resulting values are guaranteed not to be weak or semi-weak DES keys, as all
such keys have bit 2 = bit 3; see page 375. Also, this guarantees the security require-
ment that g(IV ) 6= g̃(ĨV ).)

MDC-2 is specified in Algorithm 9.46 and illustrated in Figure 9.4.

C D

C BA

A

Eg

Xi

in2

in4

Hi

out1 out2

Hi−1 H̃i−1
in3

in1

E g̃

B

D

H̃i

Figure 9.4: Compression function of MDC-2 hash function. E = DES.

9.46 Algorithm MDC-2 hash function (DES-based)

INPUT: string x of bitlength r = 64t for t ≥ 2.
OUTPUT: 128-bit hash-code of x.

1. Partition x into 64-bit blocks xi: x = x1x2 . . . xt.
2. Choose the 64-bit non-secret constants IV , ĨV (the same constants must be used for

MDC verification) from a set of recommended prescribed values. A default set of
prescribed values is (in hexadecimal): IV = 0x5252525252525252, ĨV =
0x2525252525252525.
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3. Let || denote concatenation, and CLi , CRi the left and right 32-bit halves of Ci. The
output is h(x) = Ht || H̃t defined as follows (for 1 ≤ i ≤ t):

H0 = IV ; ki = g(Hi−1); Ci = Eki(xi)⊕xi; Hi = C
L
i || C̃i

R

H̃0 = ĨV ; k̃i = g̃(H̃i−1); C̃i = Ek̃i(xi)⊕xi; H̃i = C̃i
L
|| Ci

R .

In Algorithm 9.46, padding may be necessary to meet the bitlength constraint on the
input x. In this case, an unambiguous padding method may be used (see Remark 9.31),
possibly including MD-strengthening (see Remark 9.32).

MDC-4 (see Algorithm 9.47 and Figure 9.5) is constructed using the MDC-2 compres-
sion function. One iteration of the MDC-4 compression function consists of two sequential
executions of the MDC-2 compression function, where:

1. the two 64-bit data inputs to the first MDC-2 compression are both the same next
64-bit message block;

2. the keys for the first MDC-2 compression are derived from the outputs (chaining vari-
ables) of the previous MDC-4 compression;

3. the keys for the second MDC-2 compression are derived from the outputs (chaining
variables) of the first MDC-2 compression; and

4. the two 64-bit data inputs for the second MDC-2 compression are the outputs (chain-
ing variables) from the opposite sides of the previous MDC-4 compression.

9.47 Algorithm MDC-4 hash function (DES-based)

INPUT: string x of bitlength r = 64t for t ≥ 2. (See MDC-2 above regarding padding.)
OUTPUT: 128-bit hash-code of x.

1. As in step 1 of MDC-2 above.
2. As in step 2 of MDC-2 above.
3. With notation as in MDC-2, the output is h(x) = Gt || G̃t defined as follows (for
1 ≤ i ≤ t):

G0 = IV ; G̃0 = ĨV ;

ki = g(Gi−1); Ci = Eki(xi)⊕xi; Hi = C
L
i || C̃i

R

k̃i = g̃(G̃i−1); C̃i = Ek̃i(xi)⊕xi; H̃i = C̃i
L
|| Ci

R

ji = g(Hi); Di = Eji(G̃i−1)⊕G̃i−1; Gi = D
L
i || D̃i

R

j̃i = g̃(H̃i); D̃i = Ej̃i(Gi−1)⊕Gi−1; G̃i = D̃i
L
|| Di

R .

9.4.2 Customized hash functions based on MD4

Customized hash functions are those which are specifically designed “from scratch” for the
explicit purpose of hashing, with optimized performance in mind, and without being con-
strained to reusing existing system components such as block ciphers or modular arithmetic.
Those having received the greatest attention in practice are based on the MD4 hash function.

Number 4 in a series of hash functions (Message Digest algorithms), MD4 was de-
signed specifically for software implementation on 32-bit machines. Security concerns mo-
tivated the design of MD5 shortly thereafter, as a more conservative variation of MD4.
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Figure 9.5: Compression function of MDC-4 hash function

Other important subsequent variants include the Secure Hash Algorithm (SHA-1), the hash
function RIPEMD, and its strengthened variants RIPEMD-128 and RIPEMD-160. Param-
eters for these hash functions are summarized in Table 9.5. “Rounds × Steps per round”
refers to operations performed on input blocks within the corresponding compression func-
tion. Table 9.6 specifies test vectors for a subset of these hash functions.

Notation for description of MD4-family algorithms

Table 9.7 defines the notation for the description of MD4-family algorithms described be-
low. Note 9.48 addresses the implementation issue of converting strings of bytes to words
in an unambiguous manner.

9.48 Note (little-endian vs. big-endian) For interoperable implementations involving byte-to-
word conversions on different processors (e.g., converting between 32-bit words and groups
of four 8-bit bytes), an unambiguous convention must be specified. Consider a stream of
bytes Bi with increasing memory addresses i, to be interpreted as a 32-bit word with nu-
merical valueW . In little-endian architectures, the byte with the lowest memory address
(B1) is the least significant byte: W = 224B4 + 2

16B3 + 2
8B2 + B1. In big-endian

architectures, the byte with the lowest address (B1) is the most significant byte: W =
224B1 + 2

16B2 + 2
8B3 +B4.

(i) MD4

MD4 (Algorithm 9.49) is a 128-bit hash function. The original MD4 design goals were
that breaking it should require roughly brute-force effort: finding distinct messages with
the same hash-value should take about 264 operations, and finding a message yielding a
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Name Bitlength Rounds × Steps per round Relative speed

MD4 128 3× 16 1.00
MD5 128 4× 16 0.68
RIPEMD-128 128 4× 16 twice (in parallel) 0.39
SHA-1 160 4× 20 0.28
RIPEMD-160 160 5× 16 twice (in parallel) 0.24

Table 9.5: Summary of selected hash functions based on MD4.

Name String Hash value (as a hex byte string)

MD4 “” 31d6cfe0d16ae931b73c59d7e0c089c0
“a” bde52cb31de33e46245e05fbdbd6fb24
“abc” a448017aaf21d8525fc10ae87aa6729d
“abcdefghijklmnopqrstuvwxyz” d79e1c308aa5bbcdeea8ed63df412da9

MD5 “” d41d8cd98f00b204e9800998ecf8427e
“a” 0cc175b9c0f1b6a831c399e269772661
“abc” 900150983cd24fb0d6963f7d28e17f72
“abcdefghijklmnopqrstuvwxyz” c3fcd3d76192e4007dfb496cca67e13b

SHA-1 “” da39a3ee5e6b4b0d3255bfef95601890afd80709
“a” 86f7e437faa5a7fce15d1ddcb9eaeaea377667b8
“abc” a9993e364706816aba3e25717850c26c9cd0d89d
“abcdefghijklmnopqrstuvwxyz” 32d10c7b8cf96570ca04ce37f2a19d84240d3a89

RIPEMD-160 “” 9c1185a5c5e9fc54612808977ee8f548b2258d31
“a” 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
“abc” 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
“abcdefghijklmnopqrstuvwxyz” f71c27109c692c1b56bbdceb5b9d2865b3708dbc

Table 9.6: Test vectors for selected hash functions.

Notation Meaning

u, v, w variables representing 32-bit quantities
0x67452301 hexadecimal 32-bit integer (least significant byte: 01)
+ addition modulo 232

u bitwise complement
u←↩ s result of rotating u left through s positions
uv bitwise AND
u ∨ v bitwise inclusive-OR
u⊕v bitwise exclusive-OR
f(u, v, w) uv ∨ uw
g(u, v, w) uv ∨ uw ∨ vw
h(u, v, w) u⊕v⊕w
(X1, . . . , Xj)← simultaneous assignments (Xi ← Yi),
(Y1, . . . , Yj) where (Y1, . . . , Yj) is evaluated prior to any assignments

Table 9.7: Notation for MD4-family algorithms.
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pre-specified hash-value about 2128 operations. It is now known that MD4 fails to meet this
goal (Remark 9.50). Nonetheless, a full description of MD4 is included as Algorithm 9.49
for historical and cryptanalytic reference. It also serves as a convenient reference for de-
scribing, and allowing comparisons between, other hash functions in this family.

9.49 Algorithm MD4 hash function

INPUT: bitstring x of arbitrary bitlength b ≥ 0. (For notation see Table 9.7.)
OUTPUT: 128-bit hash-code of x. (See Table 9.6 for test vectors.)

1. Definition of constants. Define four 32-bit initial chaining values (IVs):
h1 = 0x67452301, h2 = 0xefcdab89, h3 = 0x98badcfe, h4 = 0x10325476.
Define additive 32-bit constants:
y[j] = 0, 0 ≤ j ≤ 15;
y[j] = 0x5a827999, 16 ≤ j ≤ 31; (constant = square-root of 2)
y[j] = 0x6ed9eba1, 32 ≤ j ≤ 47; (constant = square-root of 3)
Define order for accessing source words (each list contains 0 through 15):
z[0..15] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
z[16..31] = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],
z[32..47] = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15].
Finally define the number of bit positions for left shifts (rotates):
s[0..15] = [3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19],
s[16..31] = [3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13],
s[32..47] = [3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15].

2. Preprocessing. Pad x such that its bitlength is a multiple of 512, as follows. Append
a single 1-bit, then append r−1 (≥ 0) 0-bits for the smallest r resulting in a bitlength
64 less than a multiple of 512. Finally append the 64-bit representation of b mod 264,
as two 32-bit words with least significant word first. (Regarding converting between
streams of bytes and 32-bit words, the convention is little-endian; see Note 9.48.) Let
m be the number of 512-bit blocks in the resulting string (b + r + 64 = 512m =
32 · 16m). The formatted input consists of 16m 32-bit words: x0x1 . . . x16m−1. Ini-
tialize: (H1,H2,H3,H4)← (h1, h2, h3, h4).

3. Processing. For each i from 0 to m − 1, copy the ith block of 16 32-bit words into
temporary storage: X[j] ← x16i+j , 0 ≤ j ≤ 15, then process these as below in
three 16-step rounds before updating the chaining variables:
(initialize working variables) (A,B,C,D)← (H1,H2,H3,H4).
(Round 1) For j from 0 to 15 do the following:
t ← (A + f(B,C,D) +X[z[j]] + y[j]), (A,B,C,D)← (D, t←↩ s[j], B,C).
(Round 2) For j from 16 to 31 do the following:
t ← (A + g(B,C,D) +X[z[j]] + y[j]), (A,B,C,D)← (D, t←↩ s[j]), B,C).
(Round 3) For j from 32 to 47 do the following:
t ← (A + h(B,C,D) +X[z[j]] + y[j]), (A,B,C,D)← (D, t←↩ s[j]), B,C).
(update chaining values) (H1,H2,H3,H4)← (H1+A,H2+B,H3+C,H4+D).

4. Completion. The final hash-value is the concatenation: H1||H2||H3||H4
(with first and last bytes the low- and high-order bytes ofH1, H4, respectively).

9.50 Remark (MD4 collisions) Collisions have been found for MD4 in 220 compression func-
tion computations (cf. Table 9.3). For this reason, MD4 is no longer recommended for use
as a collision-resistant hash function. While its utility as a one-way function has not been
studied in light of this result, it is prudent to expect a preimage attack on MD4 requiring
fewer than 2128 operations will be found.
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(ii) MD5

MD5 (Algorithm 9.51) was designed as a strengthened version of MD4, prior to actual MD4
collisions being found. It has enjoyed widespread use in practice. It has also now been
found to have weaknesses (Remark 9.52).

The changes made to obtain MD5 from MD4 are as follows:

1. addition of a fourth round of 16 steps, and a Round 4 function
2. replacement of the Round 2 function by a new function
3. modification of the access order for message words in Rounds 2 and 3
4. modification of the shift amounts (such that shifts differ in distinct rounds)
5. use of unique additive constants in each of the 4×16 steps, based on the integer part

of 232 · sin(j) for step j (requiring overall, 256 bytes of storage)
6. addition of output from the previous step into each of the 64 steps.

9.51 Algorithm MD5 hash function

INPUT: bitstring x of arbitrary bitlength b ≥ 0. (For notation, see Table 9.7.)
OUTPUT: 128-bit hash-code of x. (See Table 9.6 for test vectors.)

MD5 is obtained from MD4 by making the following changes.

1. Notation. Replace the Round 2 function by: g(u, v, w)
def
= uw ∨ vw.

Define a Round 4 function: k(u, v, w)
def
= v ⊕ (u ∨ w).

2. Definition of constants. Redefine unique additive constants:
y[j] = first 32 bits of binary value abs(sin(j+1)), 0 ≤ j ≤ 63, where j is in radians
and “abs” denotes absolute value. Redefine access order for words in Rounds 2 and
3, and define for Round 4:
z[16..31] = [1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12],
z[32..47] = [5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2],
z[48..63] = [0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9].
Redefine number of bit positions for left shifts (rotates):
s[0..15] = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22],
s[16..31] = [5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20],
s[32..47] = [4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23],
s[48..63] = [6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21].

3. Preprocessing. As in MD4.
4. Processing. In each of Rounds 1, 2, and 3, replace “B ← (t ←↩ s[j])” by “B ←
B + (t←↩ s[j])”. Also, immediately following Round 3 add:
(Round 4) For j from 48 to 63 do the following:
t ← (A+k(B,C,D)+X[z[j]]+y[j]), (A,B,C,D)← (D,B+(t←↩ s[j]), B,C).

5. Completion. As in MD4.

9.52 Remark (MD5 compression function collisions) While no collisions for MD5 have yet
been found (cf. Table 9.3), collisions have been found for the MD5 compression function.
More specifically, these are called collisions for random IV. (See §9.7.2, and in particular
Definition 9.97 and Note 9.98.)

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



348 Ch. 9 Hash Functions and Data Integrity

(iii) SHA-1

The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. National
Institute for Standards and Technology (NIST) for certain U.S. federal government appli-
cations. The main differences of SHA-1 from MD4 are as follows:

1. The hash-value is 160 bits, and five (vs. four) 32-bit chaining variables are used.
2. The compression function has four rounds instead of three, using the MD4 step func-

tions f , g, and h as follows: f in the first, g in the third, and h in both the second and
fourth rounds. Each round has 20 steps instead of 16.

3. Within the compression function, each 16-word message block is expanded to an 80-
word block, by a process whereby each of the last 64 of the 80 words is the XOR of
4 words from earlier positions in the expanded block. These 80 words are then input
one-word-per-step to the 80 steps.

4. The core step is modified as follows: the only rotate used is a constant 5-bit rotate;
the fifth working variable is added into each step result; message words from the ex-
panded message block are accessed sequentially; and C is updated as B rotated left
30 bits, rather than simply B.

5. SHA-1 uses four non-zero additive constants, whereas MD4 used three constants
only two of which were non-zero.

The byte ordering used for converting between streams of bytes and 32-bit words in the
official SHA-1 specification is big-endian (see Note 9.48); this differs from MD4 which is
little-endian.

9.53 Algorithm Secure Hash Algorithm – revised (SHA-1)

INPUT: bitstring x of bitlength b ≥ 0. (For notation, see Table 9.7.)
OUTPUT: 160-bit hash-code of x. (See Table 9.6 for test vectors.)

SHA-1 is defined (with reference to MD4) by making the following changes.

1. Notation. As in MD4.
2. Definition of constants. Define a fifth IV to match those in MD4: h5 = 0xc3d2e1f0.

Define per-round integer additive constants: y1 = 0x5a827999, y2 = 0x6ed9eba1,
y3 = 0x8f1bbcdc, y4 = 0xca62c1d6. (No order for accessing source words, or spec-
ification of bit positions for left shifts is required.)

3. Overall preprocessing. Pad as in MD4, except the final two 32-bit words specifying
the bitlength b is appended with most significant word preceding least significant.
As in MD4, the formatted input is 16m 32-bit words: x0x1 . . . x16m−1. Initialize
chaining variables: (H1,H2,H3,H4,H5)← (h1, h2, h3, h4, h5).

4. Processing. For each i from 0 tom − 1, copy the ith block of sixteen 32-bit words
into temporary storage: X[j]← x16i+j , 0 ≤ j ≤ 15, and process these as below in
four 20-step rounds before updating the chaining variables:
(expand 16-word block into 80-word block; letXj denoteX[j])
for j from 16 to 79,Xj ← (( Xj−3⊕Xj−8⊕Xj−14⊕Xj−16 )←↩ 1).
(initialize working variables) (A,B,C,D,E)← (H1,H2,H3,H4,H5).
(Round 1) For j from 0 to 19 do the following:
t ← ((A←↩ 5) + f(B,C,D) +E +Xj + y1),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 2) For j from 20 to 39 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y2),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
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(Round 3) For j from 40 to 59 do the following:
t ← ((A←↩ 5) + g(B,C,D) +E +Xj + y3),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 4) For j from 60 to 79 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y4),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(update chaining values)
(H1,H2,H3,H4,H5)← (H1 +A,H2 +B,H3 + C,H4 +D,H5 +E).

5. Completion. The hash-value is: H1||H2||H3||H4||H5
(with first and last bytes the high- and low-order bytes ofH1, H5, respectively).

9.54 Remark (security of SHA-1) Compared to 128-bit hash functions, the 160-bit hash-value
of SHA-1 provides increased security against brute-force attacks. SHA-1 and RIPEMD-
160 (see §9.4.2(iv)) presently appear to be of comparable strength; both are considered
stronger than MD5 (Remark 9.52). In SHA-1, a significant effect of the expansion of 16-
word message blocks to 80 words in the compression function is that any two distinct 16-
word blocks yield 80-word values which differ in a larger number of bit positions, signif-
icantly expanding the number of bit differences among message words input to the com-
pression function. The redundancy added by this preprocessing evidently adds strength.

(iv) RIPEMD-160

RIPEMD-160 (Algorithm 9.55) is a hash function based on MD4, taking into account
knowledge gained in the analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-160
compression function maps 21-word inputs (5-word chaining variable plus 16-word mes-
sage block, with 32-bit words) to 5-word outputs. Each input block is processed in parallel
by distinct versions (the left line and right line) of the compression function. The 160-bit
outputs of the separate lines are combined to give a single 160-bit output.

Notation Definition

f(u, v, w) u⊕v⊕w
g(u, v, w) uv ∨ uw
h(u, v, w) (u ∨ v)⊕w
k(u, v, w) uw ∨ vw
l(u, v, w) u⊕(v ∨ w)

Table 9.8: RIPEMD-160 round function definitions.

The RIPEMD-160 compression function differs from MD4 in the number of words of
chaining variable, the number of rounds, the round functions themselves (Table 9.8), the
order in which the input words are accessed, and the amounts by which results are rotated.
The left and and right computation lines differ from each other in these last two items, in
their additive constants, and in the order in which the round functions are applied. This de-
sign is intended to improve resistance against known attack strategies. Each of the parallel
lines uses the same IV as SHA-1. When writing the IV as a bitstring, little-endian ordering
is used for RIPEMD-160 as in MD4 (vs. big-endian in SHA-1; see Note 9.48).
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9.55 Algorithm RIPEMD-160 hash function

INPUT: bitstring x of bitlength b ≥ 0.
OUTPUT: 160-bit hash-code of x. (See Table 9.6 for test vectors.)

RIPEMD-160 is defined (with reference to MD4) by making the following changes.
1. Notation. See Table 9.7, with MD4 round functions f , g, h redefined per Table 9.8

(which also defines the new round functions k, l).
2. Definition of constants. Define a fifth IV: h5 = 0xc3d2e1f0. In addition:

(a) Use the MD4 additive constants for the left line, renamed: yL[j] = 0, 0 ≤ j ≤
15; yL[j] = 0x5a827999, 16 ≤ j ≤ 31; yL[j] = 0x6ed9eba1, 32 ≤ j ≤ 47.
Define two further constants (square roots of 5,7): yL[j] = 0x8f1bbcdc, 48 ≤
j ≤ 63; yL[j] = 0xa953fd4e, 64 ≤ j ≤ 79.

(b) Define five new additive constants for the right line (cube roots of 2,3,5,7):
yR[j] = 0x50a28be6, 0 ≤ j ≤ 15; yR[j] = 0x5c4dd124, 16 ≤ j ≤ 31;
yR[j] = 0x6d703ef3, 32 ≤ j ≤ 47; yR[j] = 0x7a6d76e9, 48 ≤ j ≤ 63;
yR[j] = 0, 64 ≤ j ≤ 79.

(c) See Table 9.9 for constants for step j of the compression function: zL[j], zR[j]
specify the access order for source words in the left and right lines; sL[j], sR[j]
the number of bit positions for rotates (see below).

3. Preprocessing. As in MD4, with addition of a fifth chaining variable: H5 ← h5.
4. Processing. For each i from 0 tom − 1, copy the ith block of sixteen 32-bit words

into temporary storage: X[j]← x16i+j , 0 ≤ j ≤ 15. Then:
(a) Execute five 16-step rounds of the left line as follows:
(AL, BL, CL, DL, EL)← (H1,H2,H3,H4,H5).
(left Round 1) For j from 0 to 15 do the following:
t ← (AL + f(BL, CL, DL) +X[zL[j]] + yL[j]),
(AL, BL, CL, DL, EL)← (EL, EL + (t←↩ sL[j]), BL, CL ←↩ 10, DL).
(left Round 2) For j from 16 to 31 do the following:
t ← (AL + g(BL, CL, DL) +X[zL[j]] + yL[j]),
(AL, BL, CL, DL, EL)← (EL, EL + (t←↩ sL[j]), BL, CL ←↩ 10, DL).
(left Round 3) For j from 32 to 47 do the following:
t ← (AL + h(BL, CL, DL) +X[zL[j]] + yL[j]),
(AL, BL, CL, DL, EL)← (EL, EL + (t←↩ sL[j]), BL, CL ←↩ 10, DL).
(left Round 4) For j from 48 to 63 do the following:
t ← (AL + k(BL, CL, DL) +X[zL[j]] + yL[j]),
(AL, BL, CL, DL, EL)← (EL, EL + (t←↩ sL[j]), BL, CL ←↩ 10, DL).
(left Round 5) For j from 64 to 79 do the following:
t ← (AL + l(BL, CL, DL) +X[zL[j]] + yL[j]),
(AL, BL, CL, DL, EL)← (EL, EL + (t←↩ sL[j]), BL, CL ←↩ 10, DL).

(b) Execute in parallel with the above five rounds an analogous right line with
(AR, BR, CR, DR, ER), yR[j], zR[j], sR[j] replacing the corresponding quan-
tities with subscriptL; and the order of the round functions reversed so that their
order is: l, k, h, g, and f . Start by initializing the right line working variables:
(AR, BR, CR, DR, ER)← (H1,H2,H3,H4,H5).

(c) After executing both the left and right lines above, update the chaining values
as follows: t ← H1, H1 ← H2 + CL +DR, H2 ← H3 +DL + ER, H3 ←
H4 +EL +AR,H4 ← H5 + AL +BR, H5 ← t+BL + CR.

5. Completion. The final hash-value is the concatenation: H1||H2||H3||H4||H5
(with first and last bytes the low- and high-order bytes ofH1, H5, respectively).
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Variable Value

zL[ 0..15] [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15]
zL[16..31] [ 7, 4,13, 1,10, 6,15, 3,12, 0, 9, 5, 2,14,11, 8]
zL[32..47] [ 3,10,14, 4, 9,15, 8, 1, 2, 7, 0, 6,13,11, 5,12]
zL[48..63] [ 1, 9,11,10, 0, 8,12, 4,13, 3, 7,15,14, 5, 6, 2]
zL[64..79] [ 4, 0, 5, 9, 7,12, 2,10,14, 1, 3, 8,11, 6,15,13]
zR[ 0..15] [ 5,14, 7, 0, 9, 2,11, 4,13, 6,15, 8, 1,10, 3,12]
zR[16..31] [ 6,11, 3, 7, 0,13, 5,10,14,15, 8,12, 4, 9, 1, 2]
zR[32..47] [15, 5, 1, 3, 7,14, 6, 9,11, 8,12, 2,10, 0, 4,13]
zR[48..63] [ 8, 6, 4, 1, 3,11,15, 0, 5,12, 2,13, 9, 7,10,14]
zR[64..79] [12,15,10, 4, 1, 5, 8, 7, 6, 2,13,14, 0, 3, 9,11]
sL[ 0..15] [11,14,15,12, 5, 8, 7, 9,11,13,14,15, 6, 7, 9, 8]
sL[16..31] [ 7, 6, 8,13,11, 9, 7,15, 7,12,15, 9,11, 7,13,12]
sL[32..47] [11,13, 6, 7,14, 9,13,15,14, 8,13, 6, 5,12, 7, 5]
sL[48..63] [11,12,14,15,14,15, 9, 8, 9,14, 5, 6, 8, 6, 5,12]
sL[64..79] [ 9,15, 5,11, 6, 8,13,12, 5,12,13,14,11, 8, 5, 6]
sR[ 0..15] [ 8, 9, 9,11,13,15,15, 5, 7, 7, 8,11,14,14,12, 6]
sR[16..31] [ 9,13,15, 7,12, 8, 9,11, 7, 7,12, 7, 6,15,13,11]
sR[32..47] [ 9, 7,15,11, 8, 6, 6,14,12,13, 5,14,13,13, 7, 5]
sR[48..63] [15, 5, 8,11,14,14, 6,14, 6, 9,12, 9,12, 5,15, 8]
sR[64..79] [ 8, 5,12, 9,12, 5,14, 6, 8,13, 6, 5,15,13,11,11]

Table 9.9: RIPEMD-160 word-access orders and rotate counts (cf. Algorithm 9.55).

9.4.3 Hash functions based on modular arithmetic

The basic idea of hash functions based on modular arithmetic is to construct an iterated
hash function using modM arithmetic as the basis of a compression function. Two moti-
vating factors are re-use of existing software or hardware (in public-key systems) for mod-
ular arithmetic, and scalability to match required security levels. Significant disadvantages,
however, include speed (e.g., relative to the customized hash functions of §9.4.2), and an
embarrassing history of insecure proposals.

MASH

MASH-1 (Modular Arithmetic Secure Hash, algorithm 1) is a hash function based on mod-
ular arithmetic. It has been proposed for inclusion in a draft ISO/IEC standard. MASH-1
involves use of an RSA-like modulusM , whose bitlength affects the security. M should
be difficult to factor, and forM of unknown factorization, the security is based in part on
the difficulty of extracting modular roots (§3.5.2). The bitlength ofM also determines the
blocksize for processing messages, and the size of the hash-result (e.g., a 1025-bit modulus
yields a 1024-bit hash-result). As a recent proposal, its security remains open to question
(page 381). Techniques for reducing the size of the final hash-result have also been pro-
posed, but their security is again undetermined as yet.
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9.56 Algorithm MASH-1 (version of Nov. 1995)

INPUT: data x of bitlength 0 ≤ b < 2n/2.
OUTPUT: n-bit hash of x (n is approximately the bitlength of the modulusM ).

1. System setup and constant definitions. Fix an RSA-like modulusM = pq of bitlength
m, where p and q are randomly chosen secret primes such that the factorization of
M is intractable. Define the bitlength n of the hash-result to be the largest multiple
of 16 less than m (i.e., n = 16n′ < m). H0 = 0 is defined as an IV, and an n-
bit integer constant A = 0xf0. . .0. “∨” denotes bitwise inclusive-OR; “⊕” denotes
bitwise exclusive-OR.

2. Padding, blocking, and MD-strengthening. Pad x with 0-bits, if necessary, to obtain
a string of bitlength t·n/2 for the smallest possible t ≥ 1. Divide the padded text into
(n/2)-bit blocks x1, . . . , xt, and append a final block xt+1 containing the (n/2)-bit
representation of b.

3. Expansion. Expand each xi to an n-bit block yi by partitioning it into (4-bit) nibbles
and inserting four 1-bits preceding each, except for yt+1 wherein the inserted nibble
is 1010 (not 1111).

4. Compression function processing. For 1 ≤ i ≤ t+1, map two n-bit inputs (Hi−1, yi)
to one n-bit output as follows: Hi ← ((((Hi−1⊕yi) ∨ A)2 modM) a n)⊕Hi−1.
Here a n denotes keeping the rightmost n bits of them-bit result to its left.

5. Completion. The hash is the n-bit blockHt+1.

MASH-2 is defined as per MASH-1 with the exponent e = 2 used for squaring in the
compression function processing stage (step 4) replaced with e = 28 + 1.

9.5 Keyed hash functions (MACs)

Keyed hash functions whose specific purpose is message authentication are called message
authentication code (MAC) algorithms. Compared to the large number of MDC algorithms,
prior to 1995 relatively few MAC algorithms had been proposed, presumably because the
original proposals, which were widely adopted in practice, were adequate. Many of these
are for historical reasons block-cipher based. Those with relatively short MAC bitlengths
(e.g., 32-bits for MAA) or short keys (e.g., 56 bits for MACs based on DES-CBC) may still
offer adequate security, depending on the computational resources available to adversaries,
and the particular environment of application.

Many iterated MACs can be described as iterated hash functions (see Figure 9.2, and
equation (9.1) on page 333). In this case, the MAC key is generally part of the output trans-
formation g; it may also be an input to the compression function in the first iteration, and
be involved in the compression function f at every stage.

Fact 9.57 is a general result giving an upper bound on the security of MACs.

9.57 Fact (birthday attack on MACs) Let h be a MAC algorithm based on an iterated com-
pression function, which has n bits of internal chaining variable, and is deterministic (i.e.,
them-bit result is fully determined by the message). Then MAC forgery is possible using
O(2n/2) known text-MAC pairs plus a number v of chosen text-MAC pairs which (depend-
ing on h) is between 1 and about 2n−m.
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9.5.1 MACs based on block ciphers

CBC-based MACs

The most commonly used MAC algorithm based on a block cipher makes use of cipher-
block-chaining (§7.2.2(ii)). When DES is used as the block cipher E, n = 64 in what fol-
lows, and the MAC key is a 56-bit DES key.

9.58 Algorithm CBC-MAC

INPUT: data x; specification of block cipher E; secret MAC key k for E.
OUTPUT: n-bit MAC on x (n is the blocklength of E).

1. Padding and blocking. Pad x if necessary (e.g., using Algorithm 9.30). Divide the
padded text into n-bit blocks denoted x1, . . . , xt.

2. CBC processing. Letting Ek denote encryption using E with key k, compute the
block Ht as follows: H1 ← Ek(x1); Hi ← Ek(Hi−1⊕xi), 2 ≤ i ≤ t. (This is
standard cipher-block-chaining, IV = 0, discarding ciphertext blocks Ci = Hi.)

3. Optional process to increase strength of MAC. Using a second secret key k′ 6= k,
optionally compute: H ′t ← E

−1
k′ (Ht), Ht ← Ek(H

′
t). (This amounts to using two-

key triple-encryption on the last block; see Remark 9.59.)
4. Completion. The MAC is the n-bit blockHt.

E
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x2 xt

optional
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0

k
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Figure 9.6: CBC-based MAC algorithm.

For CBC-MAC with n = 64 = m, Fact 9.57 applies with v = 1.

9.59 Remark (CBC-MAC strengthening) The optional process reduces the threat of exhaus-
tive key search, and prevents chosen-text existential forgery (Example 9.62), without im-
pacting the efficiency of the intermediate stages as would using two-key triple-encryption
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throughout. Alternatives to combat such forgery include prepending the input with a length
block before the MAC computation; or using keyK to encrypt the lengthm yieldingK ′ =
EK(m), before usingK ′ as the key to MAC the message.

9.60 Remark (truncated MAC outputs) Exhaustive attack may, depending on the unicity dis-
tance of the MAC, be precluded (information-theoretically) by using less than n bits of the
final output as the m-bit MAC. (This must be traded off against an increase in the proba-
bility of randomly guessing the MAC: 2−m.) For m = 32 and E = DES, an exhaustive
attack reduces the key space to about 224 possibilities. However, even form < n, a second
text-MAC pair almost certainly determines a unique MAC key.

9.61 Remark (CBC-MAC IV) While a random IV in CBC encryption serves to prevent a code-
book attack on the first ciphertext block, this is not a concern in a MAC algorithm.

9.62 Example (existential forgery of CBC-MAC) While CBC-MAC is secure for messages of
a fixed number t of blocks, additional measures (beyond simply adding a trailing length-
block) are required if variable length messages are allowed, otherwise (adaptive chosen-
text) existential forgery is possible as follows. Assume xi is an n-bit block, and let ⊥b
denote the n-bit binary representation of b. Let (x1,M1) be a known text-MAC pair, and
request the MAC M2 for the one-block message x2 = M1; then M2 = Ek(Ek(x1))
is also the MAC for the 2-block message (x1||⊥0). As a less trivial example, given two
known text-MAC pairs (x1,H1), (x2,H2) for one-block messages x1, x2, and request-
ing the MAC M on a chosen 2-block third message (x1||z) for a third text-MAC pair
((x1||z),M), then Hi = Ek(xi), M = Ek(H1⊕z), and the MAC for the new 2-block
message X = x2||(H1⊕z⊕H2) is known – it is M also. Moreover, MD-strengthening
(Algorithm 9.26) does not address the problem: assume padding by Algorithm 9.29, re-
place the third message above by the 3-block message (x1||⊥64||z), note

H ′i = Ek(Ek(xi)⊕⊥64), M3 = Ek(Ek(Ek(Ek(x1)⊕⊥64)⊕z)⊕⊥192),

andM3 is also the MAC for the new 3-block messageX = (x2||⊥64||H ′1⊕H
′
2⊕z). �

9.63 Example (RIPE-MAC) RIPE-MAC is a variant of CBC-MAC. Two versions RIPE-
MAC1 and RIPE-MAC3, both producing 64-bit MACs, differ in their internal encryption
function E being either single DES or two-key triple-DES, respectively, requiring a 56-
or 112-bit key k (cf. Remark 9.59). Differences from Algorithm 9.58 are as follows: the
compression function uses a non-invertible chaining best described as CBC with data feed-
forward: Hi ← Ek(Hi−1⊕xi)⊕xi; after padding using Algorithm 9.30, a final 64-bit
length-block (giving bitlength of original input) is appended; the optional process of Al-
gorithm 9.58 is mandatory with final output block encrypted using key k′ derived by com-
plementing alternating nibbles of k: for k = k0 . . . k63 a 56-bit DES key with parity bits
k7k15 . . . k63, k′ = k ⊕ 0xf0f0f0f0f0f0f0f0. �

9.5.2 Constructing MACs from MDCs

A common suggestion is to construct a MAC algorithm from an MDC algorithm, by simply
including a secret key k as part of the MDC input. A concern with this approach is that
implicit but unverified assumptions are often made about the properties that MDCs have;
in particular, while most MDCs are designed to provide one-wayness or collision resistance,
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the requirements of a MAC algorithm differ (Definition 9.7). Even in the case that a one-
way hash function precludes recovery of a secret key used as a partial message input (cf.
partial-preimage resistance, page 331), this does not guarantee the infeasibility of producing
MACs for new inputs. The following examples suggest that construction of a MAC from
a hash function requires careful analysis.

9.64 Example (secret prefix method) Consider a messagex = x1x2 . . . xt and an iterated MDC
h with compression function f , with definition: H0 = IV,Hi = f(Hi−1, xi); h(x) =
Ht. (1) Suppose one attempts to use h as a MAC algorithm by prepending a secret key k,
so that the proposed MAC on x is M = h(k||x). Then, extending the message x by an
arbitrary single block y, one may deduceM ′ = h(k||x||y) as f(M,y) without knowing
the secret key k (the original MACM serves as chaining variable). This is true even for
hash functions whose preprocessing pads inputs with length indicators (e.g., MD5); in this
case, the padding/length-block z for the original message x would appear as part of the
extended message, x||z||y, but a forged MAC on the latter may nonetheless be deduced. (2)
For similar reasons, it is insecure to use an MDC to construct a MAC algorithm by using the
secret MAC key k as IV. If k comprises the entire first block, then for efficiency f(IV, k)
may be precomputed, illustrating that an adversary need only find a k′ (not necessarily k)
such that f(IV, k) = f(IV, k′); this is equivalent to using a secret IV. �

9.65 Example (secret suffix method) An alternative proposal is to use a secret key as a suffix,
i.e., the n-bit MAC on x isM = h(x||k). In this case, a birthday attack applies (§9.7.1).
An adversary free to choose the message x (or a prefix thereof) may, in O(2n/2) operations,
find a pair of messages x, x′ for which h(x) = h(x′). (This can be done off-line, and does
not require knowledge of k; the assumption here is that n is the size of both the chaining
variable and the final output.) Obtaining a MACM on x by legitimate means then allows
an adversary to produce a correct text-MAC pair (x′,M) for a new message x′. Note that
this method essentially hashes and then encrypts the hash-value in the final iteration; in this
weak form of MAC, the MAC-value depends only on the last chaining value, and the key
is used in only one step. �

The above examples suggest that a MAC key should be involved at both the start and
the end of MAC computations, leading to Example 9.66.

9.66 Example (envelope method with padding) For a key k and MDC h, compute the MAC
on a message x as: hk(x) = h(k || p ||x || k). Here p is a string used to pad k to the length
of one block, to ensure that the internal computation involves at least two iterations. For
example, if h is MD5 and k is 128 bits, p is a 384-bit pad string. �

Due to both a certificational attack against the MAC construction of Example 9.66 and
theoretical support for that of Example 9.67 (see page 382), the latter construction is fa-
vored.

9.67 Example (hash-based MAC) For a key k and MDC h, compute the MAC on a message
x as HMAC(x) = h(k || p1 ||h(k || p2 ||x)), where p1, p2 are distinct strings of sufficient
length to pad k out to a full block for the compression function. The overall construction is
quite efficient despite two calls to h, since the outer execution processes only (e.g., if h is
MD5) a two-block input, independent of the length of x. �

Additional suggestions for achieving MAC-like functionality by combining MDCs and
encryption are discussed in §9.6.5.
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9.5.3 Customized MACs

Two algorithms designed for the specific purpose of message authentication are discussed
in this section: MAA and MD5-MAC.

Message Authenticator Algorithm (MAA)

The Message Authenticator Algorithm (MAA), dating from 1983, is a customized MAC
algorithm for 32-bit machines, involving 32-bit operations throughout. It is specified as
Algorithm 9.68 and illustrated in Figure 9.7. The main loop consists of two parallel inter-
dependent streams of computation. Messages are processed in 4-byte blocks using 8 bytes
of chaining variable. The execution time (excluding key expansion) is proportional to mes-
sage length; as a rough guideline, MAA is twice as slow as MD4.

9.68 Algorithm Message Authenticator Algorithm (MAA)

INPUT: data x of bitlength 32j, 1 ≤ j ≤ 106; secret 64-bit MAC key Z = Z[1]..Z[8].
OUTPUT: 32-bit MAC on x.

1. Message-independent key expansion. Expand keyZ to six 32-bit quantitiesX , Y , V ,
W , S, T (X,Y are initial values; V,W are main loop variables; S, T are appended
to the message) as follows.
1.1 First replace any bytes 0x00 or 0xff in Z as follows. P ← 0; for i from 1 to 8

(P ← 2P ; if Z[i] = 0x00 or 0xff then (P ← P + 1; Z[i]← Z[i] OR P )).
1.2 Let J andK be the first 4 bytes and last 4 bytes of Z, and compute:4

X ← J4 (mod 232 − 1)⊕J4 (mod 232 − 2)
Y ← [K5 (mod 232 − 1)⊕K5 (mod 232 − 2)](1 + P )2 (mod 232 − 2)
V ← J6 (mod 232 − 1)⊕J6 (mod 232 − 2)
W ← K7 (mod 232 − 1)⊕K7 (mod 232 − 2)
S ← J8 (mod 232 − 1)⊕J8 (mod 232 − 2)
T ← K9 (mod 232 − 1)⊕K9 (mod 232 − 2)

1.3 Process the 3 resulting pairs (X,Y ), (V,W ), (S, T ) to remove any bytes 0x00,
0xff as for Z earlier. Define the AND-OR constants: A = 0x02040801, B =
0x00804021,C = 0xbfef7fdf,D = 0x7dfefbff.

2. Initialization and preprocessing. Initialize the rotating vector: v ← V , and the chain-
ing variables: H1 ← X , H2 ← Y . Append the key-derived blocks S, T to x, and
let x1 . . . xt denote the resulting augmented segment of 32-bit blocks. (The final 2
blocks of the segment thus involve key-derived secrets.)

3. Block processing. Process each 32-bit block xi (for i from 1 to t) as follows.
v ← (v ←↩ 1), U ← (v⊕W )
t1 ← (H1⊕xi)×1 (((H2⊕xi) + U) OR A) AND C)
t2 ← (H2⊕xi)×2 (((H1⊕xi) + U) OR B) AND D)
H1 ← t1,H2 ← t2
where ×i denotes special multiplication mod 232 − i as noted above (i = 1 or 2);
“+” is addition mod 232; and “←↩ 1” denotes rotation left one bit. (Each combined
AND-OR operation on a 32-bit quantity sets 4 bits to 1, and 4 to 0, precluding 0-
multipliers.)

4. Completion. The resulting MAC is: H = H1⊕H2.

4In ISO 8731-2, a well-defined but unconventional definition of multiplication mod 232 − 2 is specified, pro-
ducing 32-bit results which in some cases are 232 − 1 or 232 − 2; for this reason, specifying e.g., J6 here may
be ambiguous; the standard should be consulted for exact details.
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Figure 9.7: The Message Authenticator Algorithm (MAA).

Since the relatively complex key expansion stage is independent of the message, a one-
time computation suffices for a fixed key. The mixing of various operations (arithmetic mod
232 − i, for i = 0, 1 and 2; XOR; and nonlinear AND-OR computations) is intended to
strengthen the algorithm against arithmetic cryptanalytic attacks.

MD5-MAC

A more conservative approach (cf. Example 9.66) to building a MAC from an MDC is to
arrange that the MAC compression function itself depend on k, implying the secret key be
involved in all intervening iterations; this provides additional protection in the case that
weaknesses of the underlying hash function become known. Algorithm 9.69 is such a tech-
nique, constructed using MD5. It provides performanceclose to that of MD5 (5-20% slower
in software).
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9.69 Algorithm MD5-MAC

INPUT: bitstring x of arbitrary bitlength b ≥ 0; key k of bitlength≤ 128.
OUTPUT: 64-bit MAC-value of x.

MD5-MAC is obtained from MD5 (Algorithm 9.51) by the following changes.

1. Constants. The constants Ui and Ti are as defined in Example 9.70.
2. Key expansion.

(a) If k is shorter than 128 bits, concatenate k to itself a sufficient number of times,
and redefine k to be the leftmost 128 bits.

(b) Let MD5 denote MD5 with both padding and appended length omitted. Expand
k into three 16-byte subkeys K0, K1, and K2 as follows: for i from 0 to 2,
Ki ← MD5(k ‖Ui ‖ k).

(c) Partition each ofK0 andK1 into four 32-bit substringsKj[i], 0 ≤ i ≤ 3.

3. K0 replaces the four 32-bit IV ’s of MD5 (i.e., hi = K0[i]).
4. K1[i] is added mod 232 to each constant y[j] used in Round i of MD5.
5. K2 is used to construct the following 512-bit block, which is appended to the padded

input x subsequent to the regular padding and length block as defined by MD5:
K2 ‖K2 ⊕ T0 ‖K2 ⊕ T1 ‖K2 ⊕ T2.

6. The MAC-value is the leftmost 64 bits of the 128-bit output from hashing this padded
and extended input string using MD5 with the above modifications.

9.70 Example (MD5-MAC constants/test vectors) The 16-byte constants Ti and three test vec-
tors (x, MD5-MAC(x)) for key k = 00112233445566778899aabbccddeeff are
given below. (The Ti themselves are derived using MD5 on pre-defined constants.) With
subscripts in Ti taken mod 3, the 96-byte constants U0, U1, U2 are defined:
Ui = Ti ‖Ti+1 ‖Ti+2 ‖Ti ‖Ti+1 ‖Ti+2.

T0: 97 ef 45 ac 29 0f 43 cd 45 7e 1b 55 1c 80 11 34
T1: b1 77 ce 96 2e 72 8e 7c 5f 5a ab 0a 36 43 be 18
T2: 9d 21 b4 21 bc 87 b9 4d a2 9d 27 bd c7 5b d7 c3
("", 1f1ef2375cc0e0844f98e7e811a34da8)
("abc", e8013c11f7209d1328c0caa04fd012a6)
("abcdefghijklmnopqrstuvwxyz", 9172867eb60017884c6fa8cc88ebe7c9)

�

9.5.4 MACs for stream ciphers

Providing data origin authentication and data integrity guarantees for stream ciphers is par-
ticularly important due to the fact that bit manipulations in additive stream-ciphers may di-
rectly result in predictable modifications of the underlying plaintext (e.g., Example 9.83).
While iterated hash functions process message data a block at a time (§9.3.1), MACs de-
signed for use with stream ciphers process messages either one bit or one symbol (block) at
a time, and those which may be implemented using linear feedback shift registers (LFSRs)
are desirable for reasons of efficiency.

One such MAC technique, Algorithm 9.72 below, is based on cyclic redundancy codes
(cf. Example 9.80). In this case, the polynomial division may be implemented using an
LFSR. The following definition is of use in what follows.
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9.71 Definition A (b,m) hash-family H is a collection of hash functions mapping b-bit mes-
sages tom-bit hash-values. A (b,m) hash-family is ε-balanced if for all messages B 6= 0
and all m-bit hash-values c, probh(h(B) = c)) ≤ ε, where the probability is over all ran-
domly selected functions h ∈ H.

9.72 Algorithm CRC-based MAC

INPUT: b-bit message B; shared key (see below) between MAC source and verifier.
OUTPUT:m-bit MAC-value on B (e.g.,m = 64).

1. Notation. Associate B = Bb−1 . . . B1B0 with the polynomialB(x) =
∑b−1
i=0 Bix

i.
2. Selection of MAC key.

(a) Select a random binary irreducible polynomial p(x) of degreem. (This repre-
sents randomly drawing a function h from a (b,m) hash-family.)

(b) Select a randomm-bit one-time key k (to be used as a one-time pad).

The secret MAC key consists of p(x) and k, both of which must be shared a priori
between the MAC originator and verifier.

3. Compute h(B) = coef (B(x) · xm mod p(x)), them-bit string of coefficients from
the degreem− 1 remainder polynomial after dividing B(x) · xm by p(x).

4. Them-bit MAC-value for B is: h(B)⊕k.

9.73 Fact (security of CRC-based MAC) For any values b andm > 1, the hash-family resulting
from Algorithm 9.72 is ε-balanced for ε = (b+m)/(2m−1), and the probability of MAC
forgery is at most ε.

9.74 Remark (polynomial reuse) The hash function h in Algorithm 9.72 is determined by the
irreducible polynomial p(x). In practice, p(x) may be re-used for different messages (e.g.,
within a session), but for each message a new random key k should be used.

9.6 Data integrity and message authentication

This section considers the use of hash functions for data integrity and message authenti-
cation. Following preliminary subsections, respectively, providing background definitions
and distinguishing non-malicious from malicious threats to data integrity, three subsequent
subsections consider three basic approaches to providing data integrity using hash func-
tions, as summarized in Figure 9.8.

9.6.1 Background and definitions

This subsection discusses data integrity, data origin authentication (message authentica-
tion), and transaction authentication.

Assurances are typically required both that data actually came from its reputed source
(data origin authentication), and that its state is unaltered (data integrity). These issues can-
not be separated – data which has been altered effectively has a new source; and if a source
cannot be determined, then the question of alteration cannot be settled (without reference
to a source). Integrity mechanisms thus implicitly provide data origin authentication, and
vice versa.
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Figure 9.8: Three methods for providing data integrity using hash functions. The second method provides
encipherment simultaneously.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§9.6 Data integrity and message authentication 361

(i) Data integrity

9.75 Definition Data integrity is the property whereby data has not been altered in an unautho-
rized manner since the time it was created, transmitted, or stored by an authorized source.

Verification of data integrity requires that only a subset of all candidate data items sat-
isfies particular criteria distinguishing the acceptable from the unacceptable. Criteria al-
lowing recognizability of data integrity include appropriate redundancy or expectation with
respect to format. Cryptographic techniques for data integrity rely on either secret informa-
tion or authentic channels (§9.6.4).

The specific focus of data integrity is on the bitwise composition of data (cf. transac-
tion authentication below). Operations which invalidate integrity include: insertion of bits,
including entirely new data items from fraudulent sources; deletion of bits (short of deleting
entire data items); re-ordering of bits or groups of bits; inversion or substitution of bits; and
any combination of these, such as message splicing (re-use of proper substrings to construct
new or altered data items). Data integrity includes the notion that data items are complete.
For items split into multiple blocks, the above alterations apply analogously with blocks
envisioned as substrings of a contiguous data string.

(ii) Data origin authentication (message authentication)

9.76 Definition Data origin authentication is a type of authentication whereby a party is cor-
roborated as the (original) source of specified data created at some (typically unspecified)
time in the past.

By definition, data origin authentication includes data integrity.

9.77 Definition Message authentication is a term used analogously with data origin authenti-
cation. It provides data origin authentication with respect to the original message source
(and data integrity, but no uniqueness and timeliness guarantees).

Methods for providing data origin authentication include the following:

1. message authentication codes (MACs)
2. digital signature schemes
3. appending (prior to encryption) a secret authenticator value to encrypted text.5

Data origin authentication mechanisms based on shared secret keys (e.g., MACs) do not
allow a distinction to be made between the parties sharing the key, and thus (as opposed to
digital signatures) do not provide non-repudiation of data origin – either party can equally
originate a message using the shared key. If resolution of subsequent disputes is a potential
requirement, either an on-line trusted third party in a notary role, or asymmetric techniques
(see Chapter 11) may be used.

While MACs and digital signatures may be used to establish that data was generated by
a specified party at some time in the past, they provide no inherent uniqueness or timeliness
guarantees. These techniques alone thus cannot detect message re-use or replay, which is
necessary in environments where messages may have renewed effect on second or subse-
quent use. Such message authentication techniques may, however, be augmented to provide
these guarantees, as next discussed.

5Such a sealed authenticator (cf. a MAC, sometimes called an appended authenticator) is used along with an
encryption method which provides error extension. While this resembles the technique of using encryption and
an MDC (§9.6.5), whereas the MDC is a (known) function of the plaintext, a sealed authenticator is itself secret.
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(iii) Transaction authentication

9.78 Definition Transaction authentication denotes message authentication augmented to ad-
ditionally provide uniqueness and timeliness guarantees on data (thus preventing unde-
tectable message replay).

The uniqueness and timeliness guarantees of Definition 9.78 are typically provided
by appropriate use of time-variant parameters (TVPs). These include random numbers in
challenge-response protocols, sequence numbers, and timestamps as discussed in §10.3.1.
This may be viewed as a combination of message authentication and entity authentication
(Definition 10.1). Loosely speaking,

message authentication + TVP = transaction authentication.

As a simple example, sequence numbers included within the data of messages authen-
ticated by a MAC or digital signature algorithm allow replay detection (see Remark 9.79),
and thus provide transaction authentication.

As a second example, for exchanges between two parties involving two or more mes-
sages, transaction authentication on each of the second and subsequent messages may be
provided by including in the message data covered by a MAC a random number sent by the
other party in the previous message. This chaining of messages through random numbers
prevents message replay, since any MAC values in replayed messages would be incorrect
(due to disagreement between the random number in the replayed message, and the most
recent random number of the verifier).

Table 9.10 summarizes the properties of these and other types of authentication. Au-
thentication in the broadest sense encompasses not only data integrity and data origin au-
thentication, but also protection from all active attacks including fraudulent representation
and message replay. In contrast, encryption provides protection only from passive attacks.

→ Property identification data timeliness or defined
↓ Type of authentication of source integrity uniqueness in

message authentication yes yes — §9.6.1
transaction authentication yes yes yes §9.6.1
entity authentication yes — yes §10.1.1
key authentication yes yes desirable §12.2.1

Table 9.10: Properties of various types of authentication.

9.79 Remark (sequence numbers and authentication) Sequence numbers may provide unique-
ness, but not (real-time) timeliness, and thus are more appropriate to detect message replay
than for entity authentication. Sequence numbers may also be used to detect the deletion of
entire messages; they thus allow data integrity to be checked over an ongoing sequence of
messages, in addition to individual messages.

9.6.2 Non-malicious vs. malicious threats to data integrity

The techniques required to provide data integrity on noisy channels differ substantially from
those required on channels subject to manipulation by adversaries.

Checksums provide protection against accidental or non-malicious errors on channels
which are subject to transmission errors. The protection is non-cryptographic, in the sense
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that neither secret keys nor secured channels are used. Checksums generalize the idea of
a parity bit by appending a (small) constant amount of message-specific redundancy. Both
the data and the checksum are transmitted to a receiver, at which point the same redundancy
computation is carried out on the received data and compared to the received checksum.
Checksums can be used either for error detection or in association with higher-level error-
recovery strategies (e.g., protocols involving acknowledgements and retransmission upon
failure). Trivial examples include an arithmetic checksum (compute the running 32-bit sum
of all 32-bit data words, discarding high-order carries), and a simple XOR (XOR all 32-
bit words in a data string). Error-correcting codes go one step further than error-detecting
codes, offering the capability to actually correct a limited number of errors without retrans-
mission; this is sometimes called forward error correction.

9.80 Example (CRCs) Cyclic redundancy codes or CRCs are commonly used checksums. A
k-bit CRC algorithm maps arbitrary length inputs into k-bit imprints, and provides signif-
icantly better error-detection capability than k-bit arithmetic checksums. The algorithm
is based on a carefully chosen (k + 1)-bit vector represented as a binary polynomial; for
k = 16, a commonly used polynomial (CRC-16) is g(x) = 1+x2+x15+x16. A t-bit data
input is represented as a binary polynomial d(x) of degree t − 1, and the CRC-value cor-
responding to d(x) is the 16-bit string represented by the polynomial remainder c(x) when
x16 ·d(x) is divided by g(x);6 polynomial remaindering is analogous to computing integer
remainders by long division. For all messages d(x) with t < 32 768, CRC-16 can detect
all errors that consist of only a single bit, two bits, three bits, or any odd number of bits, all
burst errors of bitlength 16 or less, 99.997% (1−2−15) of 17-bit burst errors, and 99.998%
(1−2−16) of all bursts 18 bits or longer. (A burst error of bitlength b is any bitstring of ex-
actly b bits beginning and ending with a 1.) Analogous to the integer case, other data strings
d′(x) yielding the same remainder as d(x) can be trivially found by adding multiples of the
divisor g(x) to d(x), or inserting extra blocks representing a multiple of g(x). CRCs thus
do not provide one-wayness as required for MDCs; in fact, CRCs are a class of linear (error
correcting) codes, with one-wayness comparable to an XOR-sum. �

While of use for detection of random errors, k-bit checksums are not of cryptographic
use, because typically a data string checksumming to any target value can be easily created.
One method is to simply insert or append to any data string of choice a k-bit correcting-
block c which has the effect of correcting the overall checksum to the desired value. For
example, for the trivial XOR checksum, if the target checksum is c′, insert as block c the
XOR of c′ and the XOR of all other blocks.

In contrast to checksums, data integrity mechanisms based on (cryptographic) hash
functions are specifically designed to preclude undetectable intentional modification. The
hash-values resulting are sometimes called integrity check values (ICV), or cryptographic
check values in the case of keyed hash functions. Semantically, it should not be possible for
an adversary to take advantage of the willingness of users to associate a given hash output
with a single, specific input, despite the fact that each such output typically corresponds to
a large set of inputs. Hash functions should exhibit no predictable relationships or correla-
tions between inputs and outputs, as these may allow adversaries to orchestrate unintended
associations.
6A modification is typically used in practice (e.g., complementing c(x)) to address the combination of an input

d(x) = 0 and a “stuck-at-zero” communications fault yielding a successful CRC check.
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9.6.3 Data integrity using a MAC alone

Message Authentication Codes (MACs) as discussed earlier are designed specifically for
applications where data integrity (but not necessarily privacy) is required. The originator
of a message x computes a MAC hk(x) over the message using a secret MAC key k shared
with the intended recipient, and sends both (effectively x || hk(x)). The recipient deter-
mines by some means (e.g., a plaintext identifier field) the claimed source identity, sepa-
rates the received MAC from the received data, independently computes a MAC over this
data using the shared MAC key, and compares the computed MAC to the received MAC.
The recipient interprets the agreement of these values to mean the data is authentic and has
integrity – that is, it originated from the other party which knows the shared key, and has
not been altered in transit. This corresponds to Figure 9.8(a).

9.6.4 Data integrity using an MDC and an authentic channel

The use of a secret key is not essential in order to provide data integrity. It may be eliminated
by hashing a message and protecting the authenticity of the hash via an authentic (but not
necessarily private) channel. The originator computes a hash-code using an MDC over the
message data, transmits the data to a recipient over an unsecured channel, and transmits the
hash-code over an independent channel known to provide data origin authentication. Such
authentic channels may include telephone (authenticity through voice recognition), any data
medium (e.g., floppy disk, piece of paper) stored in a trusted place (e.g., locked safe), or
publication over any difficult-to-forgepublic medium (e.g., daily newspaper). The recipient
independently hashes the received data, and compares the hash-code to that received. If
these values agree, the recipient accepts the data as having integrity. This corresponds to
Figure 9.8(c).

Example applications include virus protection of software, and distribution of software
or public keys via untrusted networks. For virus checking of computer source or object
code, this technique is preferable to one resulting in encrypted text. A common example
of combining an MDC with an authentic channel to provide data integrity is digital signa-
ture schemes such as RSA, which typically involve the use of MDCs, with the asymmetric
signature providing the authentic channel.

9.6.5 Data integrity combined with encryption

Whereas digital signatures provide assurances regarding both integrity and authentication,
in general, encryption alone provides neither. This issue is first examined, and then the
question of how hash functions may be employed in conjunction with encryption to pro-
vide data integrity.

(i) Encryption alone does not guarantee data integrity

A common misconception is that encryption provides data origin authentication and data
integrity, under the argument that if a message is decrypted with a key shared only with
party A, and if the decrypted message is meaningful, then it must have originated from A.
Here “meaningful” means the message contains sufficient redundancy or meets some other
a priori expectation. While the intuition is that an attacker must know the secret key in
order to manipulate messages, this is not always true. In some cases he may be able to
choose the plaintext message, while in other cases he may be able to effectively manipulate
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plaintext despite not being able to control its specific content. The extent to which encrypted
messages can be manipulated undetectably depends on many factors, as illustrated by the
following examples.

9.81 Example (re-ordering ECB blocks) The ciphertext blocks of any block cipher used only
in ECB mode are subject to re-ordering. �

9.82 Example (encryption of random data) If the plaintext corresponding to a given cipher-
text contains no redundancy (e.g., a random key), then all attempted decryptions thereof are
meaningful, and data integrity cannot be verified. Thus, some form of redundancy is always
required to allow verification of integrity; moreover, to facilitate verification in practice, ex-
plicit redundancy verifiable by automated means is required. �

9.83 Example (bit manipulations in additive stream ciphers) Despite the fact that the one-time
pad offers unconditional secrecy, an attacker can change any single bit of plaintext by mod-
ifying the corresponding bit of ciphertext. For known-plaintext attacks, this allows an at-
tacker to substitute selected segments of plaintext by plaintext of his own choosing. An
example target bit is the high-order bit in a numeric field known to represent a dollar value.
Similar comments apply to any additive stream cipher, including the OFB mode of any
block cipher. �

9.84 Example (bit manipulation in DES ciphertext blocks) Several standard modes of opera-
tion for any block cipher are subject to selective bit manipulation. Modifying the last cipher-
text block in a CFB chain is undetectable. A ciphertext block in CFB mode which yields
random noise upon decryption is an indication of possible selective bit-manipulation of the
preceding ciphertext block. A ciphertext block in CBC mode which yields random noise
upon decryption is an indication of possible selective bit-manipulation of the following ci-
phertext block. For further discussion regarding error extension in standard modes of op-
eration, see §7.2.2. �

(ii) Data integrity using encryption and an MDC

If both confidentiality and integrity are required, then the following data integrity technique
employing anm-bit MDC h may be used. The originator of a message x computes a hash
value H = h(x) over the message, appends it to the data, and encrypts the augmented
message using a symmetric encryption algorithmE with shared key k, producing ciphertext

C = Ek(x || h(x)) (9.2)

(Note that this differs subtlely from enciphering the message and the hash separately as
(Ek(x), Ek(h(x))), which e.g. using CBC requires two IVs.) This is transmitted to a recip-
ient, who determines (e.g., by a plaintext identifier field) which key to use for decryption,
and separates the recovered datax′ from the recovered hashH ′. The recipient then indepen-
dently computes the hash h(x′) of the received data x′, and compares this to the recovered
hashH ′. If these agree, the recovered data is accepted as both being authentic and having
integrity. This corresponds to Figure 9.8(b).

The intention is that the encryption protects the appended hash, and that it be infeasi-
ble for an attacker without the encryption key to alter the message without disrupting the
correspondence between the decrypted plaintext and the recovered MDC. The properties
required of the MDC here may be notably weaker, in general, than for an MDC used in con-
junction with, say, digital signatures. Here the requirement, effectively a joint condition on
the MDC and encryption algorithm, is that it not be feasible for an adversary to manipulate
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or create new ciphertext blocks so as to produce a new ciphertext C′ which upon decryp-
tion will yield plaintext blocks having the same MDC as that recovered, with probability
significantly greater than 1 in 2m.

9.85 Remark (separation of integrity and privacy) While this approach appears to separate pri-
vacy and data integrity from a functional viewpoint, the two are not independent with re-
spect to security. The security of the integrity mechanism is, at most, that of the encryption
algorithm regardless of the strength of the MDC (consider exhaustive search of the encryp-
tion key). Thought should, therefore, be given to the relative strengths of the components.

9.86 Remark (vulnerability to known-plaintext attack) In environments where known-plain-
text attacks are possible, the technique of equation (9.2) should not be used in conjunction
with additive stream ciphers unless additional integrity techniques are used. In this sce-
nario, an attacker can recover the key stream, then make plaintext changes, recompute a
new MDC, and re-encrypt the modified message. Note this attack compromises the man-
ner in which the MDC is used, rather than the MDC or encryption algorithm directly.

If confidentiality is not essential other than to support the requirement of integrity, an
apparent option is to encrypt only either the message x or the MDC h(x). Neither approach
is common, for reasons including Remark 9.85, and the general undesirability to utilize en-
cryption primitives in systems requiring only integrity or authentication services. The fol-
lowing further comments apply:

1. encrypting the hash-code only: (x, Ek(h(x)))
Applying the key to the hash-value only (cf. Example 9.65) results in a property (typi-
cal for public-key signatures but) atypical for MACs: pairs of inputsx, x′ with collid-
ing outputs (MAC-values here) can be verifiably pre-determined without knowledge
of k. Thus hmust be collision-resistant. Other issues include: pairs of inputs having
the same MAC-value under one key also do under other keys; if the blocklength of
the cipherEk is less than the bitlengthm of the hash-value, splitting the latter across
encryption blocks may weaken security; k must be reserved exclusively for this in-
tegrity function (otherwise chosen-text attacks on encryption allow selective MAC
forgery); and Ek must not be an additive stream cipher (see Remark 9.86).

2. encrypting the plaintext only: (Ek(x), h(x))
This offers little computational savings over encrypting both message and hash (ex-
cept for very short messages) and, as above, h(x)must be collision-resistant and thus
twice the typical MAC bitlength. Correct guesses of the plaintextxmay be confirmed
(candidate values x′ for x can be checked by comparing h(x′) to h(x)).

(iii) Data integrity using encryption and a MAC

It is sometimes suggested to use a MAC rather than the MDC in the mechanism of equa-
tion (9.2) on page 365. In this case, a MAC algorithm hk′ replaces the MDC h, and rather
than C = Ek(x || h(x)), the message sent is

C′ = Ek(x || hk′(x)) (9.3)

The use of a MAC here offers the advantage (over an MDC) that should the encryption al-
gorithm be defeated, the MAC still provides integrity. A drawback is the requirement of
managing both an encryption key and a MAC key. Care must be exercised to ensure that
dependencies between the MAC and encryption algorithms do not lead to security weak-
nesses, and as a general recommendation these algorithms should be independent (see Ex-
ample 9.88).
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9.87 Remark (precluding exhaustive MAC search) Encryption of the MAC-value in equation
(9.3) precludes an exhaustive key search attack on the MAC key.

Two alternatives here include encrypting the plaintext first and then computing a MAC
over the ciphertext, and encrypting the message and MAC separately. These are discussed
in turn.

1. computing a MAC over the ciphertext: (Ek(x), hk′(Ek(x))).
This allows message authentication without knowledge of the plaintext x (or cipher-
text key). However, as the message authentication is on the ciphertext rather than the
plaintext directly, there are no guarantees that the party creating the MAC knew the
plaintext x. The recipient, therefore, must be careful about conclusions drawn – for
example, if Ek is public-key encryption, the originator of x may be independent of
the party sharing the key k′ with the recipient.

2. separate encryption and MAC: (Ek(x), hk′(x)).
This alternative requires that neither the encryption nor the MAC algorithm compro-
mises the objectives of the other. In particular, in this case an additional requirement
on the algorithm is that the MAC on x must not compromise the confidentiality of
x (cf. Definition 9.7). Keys (k, k′) should also be independent here, e.g., to pre-
clude exhaustive search on the weaker algorithm compromising the other (cf. Ex-
ample 9.88). If k and k′ are not independent, exhaustive key search is theoretically
possible even without known plaintext.

(iv) Data integrity using encryption – examples

9.88 Example (improper combination of CBC-MAC and CBC encryption) Consider using the
data integrity mechanism of equation (9.3) with Ek being CBC-encryption with key k and
initialization vector IV , hk′(x) being CBC-MAC with k′ and IV ′, and k = k′, IV = IV ′.
The data x = x1x2 . . . xt can then be processed in a single CBC pass, since the CBC-MAC
is equal to the last ciphertext block ct = Ek(ct−1⊕xt), and the last data block is xt+1 = ct,
yielding final ciphertext block ct+1 = Ek(ct⊕xt+1) = Ek(0). The encrypted MAC is thus
independent of both plaintext and ciphertext, rendering the integrity mechanism completely
insecure. Care should thus be taken in combining a MAC with an encryption scheme. In
general, it is recommended that distinct (and ideally, independent) keys be used. In some
cases, one key may be derived from the other by a simple technique; a common sugges-
tion for DES keys is complementation of every other nibble. However, arguments favoring
independent keys include the danger of encryption algorithm weaknesses compromising
authentication (or vice-versa), and differences between authentication and encryption keys
with respect to key management life cycle. See also Remark 13.32. �

An efficiency drawback in using distinct keys for secrecy and integrity is the cost of two
separate passes over the data. Example 9.89 illustrates a proposed data integrity mechanism
(which appeared in a preliminary draft of U.S. Federal Standard 1026) which attempts this
by using an essentially zero-cost linear checksum; it is, however, insecure.

9.89 Example (CBC encryption with XOR checksum – CBCC) Consider using the data integ-
rity mechanism of equation (9.2) withEk being CBC-encryption with key k, x = x1x2 . . .
xt a message of t blocks, and as MDC function the simple XOR of all plaintext blocks,
h(x) =

⊕i=t
i=1 xi. The quantity M = h(x) which serves as MDC then becomes plain-

text block xt+1. The resulting ciphertext blocks using CBC encryption with c0 = IV are
ci = Ek(xi⊕ci−1), 1 ≤ i ≤ t + 1. In the absence of manipulation, the recovered plain-
text is xi = ci−1⊕Dk(ci). To see that this scheme is insecure as an integrity mechanism,
let c′i denote the actual ciphertext blocks received by a recipient, resulting from possibly
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manipulated blocks ci, and let x′i denote the plaintext recovered by the recipient by CBC
decryption with the proper IV. The MDC computed over the recovered plaintext blocks is
then

M ′ = h(x′) =
i=t⊕
i=1

x′i =
i=t⊕
i=1

(c′i−1⊕Dk(c
′
i)) = IV⊕(

i=t−1⊕
i=1

c′i)⊕(
i=t⊕
i=1

Dk(c
′
i) )

M ′ is compared for equality with x′t+1(= c
′
t⊕Dk(c

′
t+1)) as a check for data integrity, or

equivalently, that S = M ′⊕x′t+1 = 0. By construction, S = 0 if there is no manipula-
tion (i.e., if c′i = ci, which implies x′i = xi). Moreover, the sum S is invariant under any
permutation of the values c′i, 1 ≤ i ≤ t (since Dk(ct+1) appears as a term in S, but ct+1
does not, ct+1 must be excluded from the permutable set). Thus, any of the first t ciphertext
blocks can be permuted without affecting the successful verification of the MDC. Further-
more, insertion into the ciphertext stream of any random block c∗j twice, or any set of such
pairs, will cancel itself out in the sum S, and thus also cannot be detected. �

9.90 Example (CBC encryption with mod 2n − 1 checksum) Consider as an alternative to Ex-
ample 9.89 the simple MDC function h(x) =

∑t
i=1 xi, the sum of plaintext blocks as n-bit

integers with wrap-around carry (add overflow bits back into units bit), i.e., the sum modulo
2n − 1; consider n = 64 for ciphers of blocklength 64. The sum S from Example 9.89 in
this case involves both XOR and addition modulo 2n − 1; both permutations of ciphertext
blocks and insertions of pairs of identical random blocks are now detected. (This technique
should not, however, be used in environments subject to chosen-plaintext attack.) �

9.91 Example (PCBC encryption with mod 2n checksum) A non-standard, non-self-synchron-
izing mode of DES known as plaintext-ciphertext block chaining (PCBC) is defined as fol-
lows, for i ≥ 0 and plaintext x = x1x2 . . . xt: ci+1 = Ek(xi+1⊕Gi) where G0 = IV ,
Gi = g(xi, ci) for i ≥ 1, and g a simple function such as g(xi, ci) = (xi + ci) mod
264. A one-pass technique providing both encryption and integrity, which exploits the error-
propagation property of this mode, is as follows. Append an additional plaintext block to
provide redundancy, e.g., xt+1 = IV (alternatively: a fixed constant or x1). Encrypt all
blocks of the augmented plaintext using PCBC encryption as defined above. The quantity
ct+1 =Ek(xt+1⊕g(xt, ct)) serves as MAC. Upon decipherment of ct+1, the receiver ac-
cepts the message as having integrity if the expected redundancy is evident in the recovered
block xt+1. (To avoid a known-plaintext attack, the function g in PCBC should not be a
simple XOR for this integrity application.) �

9.7 Advanced attacks on hash functions

A deeper understanding of hash function security can be obtained through consideration of
various general attack strategies. The resistance of a particular hash function to known gen-
eral attacks provides a (partial) measure of security. A selection of prominent attack strate-
gies is presented in this section, with the intention of providing an introduction sufficient to
establish that designing (good) cryptographic hash functions is not an easily mastered art.
Many other attack methods and variations exist; some are general methods, while others
rely on peculiar properties of the internal workings of specific hash functions.
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9.7.1 Birthday attacks

Algorithm-independent attacks are those which can be applied to any hash function, treat-
ing it as a black-box whose only significant characteristics are the output bitlength n (and
MAC key bitlength for MACs), and the running time for one hash operation. It is typi-
cally assumed the hash output approximates a uniform random variable. Attacks falling
under this category include those based on hash-result bitsize (page 336); exhaustive MAC
key search (page 336); and birthday attacks on hash functions (including memoryless vari-
ations) as discussed below.

(i) Yuval’s birthday attack on hash functions

Yuval’s birthday attack was one of the first (and perhaps the most well-known) of many
cryptographic applications of the birthday paradox arising from the classical occupancy
distribution (§2.1.5): when drawing elements randomly, with replacement, from a set of
N elements, with high probability a repeated element will be encountered after O(

√
N)

selections. Such attacks are among those called square-root attacks.
The relevance to hash functions is that it is easier to find collisions for a one-way hash

function than to find pre-images or second preimages of specific hash-values. As a result,
signature schemes which employ one-way hash functions may be vulnerable to Yuval’s at-
tack outlined below. The attack is applicable to all unkeyed hash functions (cf. Fact 9.33),
with running time O(2m/2) varying with the bitlengthm of the hash-value.

9.92 Algorithm Yuval’s birthday attack

INPUT: legitimate message x1; fraudulent message x2;m-bit one-way hash function h.
OUTPUT: x′1, x

′
2 resulting from minor modifications of x1, x2 with h(x′1) = h(x′2)

(thus a signature on x′1 serves as a valid signature on x′2).

1. Generate t = 2m/2 minor modifications x′1 of x1.
2. Hash each such modified message, and store the hash-values (grouped with corre-

sponding message) such that they can be subsequently searched on hash-value. (This
can done in O(t) total time using conventional hashing.)

3. Generate minor modifications x′2 of x2, computing h(x′2) for each and checking for
matches with any x′1 above; continue until a match is found. (Each table lookup will
require constant time; a match can be expected after about t candidates x′2.)

9.93 Remark (application of birthday attack) The idea of this attack can be used by a dishon-
est signer who provides to an unsuspecting party his signature on x′1 and later repudiates
signing that message, claiming instead that the message signed was x′2; or by a dishonest
verifier, who is able to convince an unsuspecting party to sign a prepared message x′1, and
later claim that party’s signature on x′2. This remark generalizes to other schemes in which
the hash of a message is taken to represent the message itself.

Regarding practicality, the collisions produced by the birthday attack are “real” (vs.
pseudo-collisions or compression function collisions), and moreover of direct practical con-
sequence when messages are constructed to be meaningful. The latter may often be done as
follows: alter inputs via individual minor modifications which create semantically equiva-
lent messages (e.g., substituting tab characters in text files for spaces, unprintable characters
for each other, etc.). For 128-bit hash functions, 64 such potential modification points are
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required to allow 264 variations. The attack then requires O(264) time (feasible with ex-
treme parallelization); and while it requires space for O(264) messages (which is impracti-
cal), the memory requirement can be addressed as discussed below.

(ii) Memoryless variation of birthday attack

To remove the memory requirement of Algorithm 9.92, a deterministic mapping may be
used which approximates a random walk through the hash-value space. By the birthday
paradox, in a random walk through a space of 2m points, one expects to encounter some
point a second time (i.e., obtain a collision) after O(2m/2) steps, after which the walk will
repeat its previous path (and begin to cycle). General memoryless cycle-finding techniques
may then be used to find this collision. (Here memoryless means requiring negligible mem-
ory, rather than in the stochastic sense.) These include Floyd’s cycle-finding algorithm
(§3.2.2) and improvements to it.

Following Algorithm 9.92, let g be a function such that g(x1,H) = x′1 is a minor
modification, determined by the hash-valueH , of message x1 (each bit ofH might define
whether or not to modify x1 at a pre-determined modification point). If x1 is fixed, then
g essentially maps a hash-result to a message and it is convenient to write gx1(H) = x

′
1.

Moreover, let g be injective so that distinct hashesH result in distinct x′1. Then, with fixed
messages x1, x2, and using some easily distinguishable property (e.g., parity) which splits
the space of hash-values into two roughly equal-sized subsets, define a function r mapping
hash-results to hash-results by:

r(H) =

{
h(gx1(H)) if H is even
h(gx2(H)) if H is odd

(9.4)

The memoryless collision search technique (see above) is then used to find two inputs to r
which map to the same output (i.e., collide). If h behaves statistically as a random mapping
then, with probability 0.5, the parity will differ in H and H ′ for the colliding inputs, in
which case without loss of generality h(gx1(H)) = h(gx2(H

′)). This yields a colliding
pair of variations x′1 = gx1(H), x

′
2 = gx2(H

′) of distinct messages x1, x2, respectively,
such that h(x′1) = h(x

′
2), as per the output of Algorithm 9.92.

(iii) Illustrative application to MD5

Actual application of the above generic attack to a specific hash function raises additional
technicalities. To illustrate how these may be addressed, such application is now examined,
with assumptions and choices made for exposition only. Let h be an iterated hash function
processing messages in 512-bit blocks and producing 128-bit hashes (e.g., MD5, RIPEMD-
128). To minimize computational expense, restrict r (effectively g and h) in equation (9.4)
to single 512-bit blocks of xi, such that each iteration of r involves only the compression
function f on inputs one message block and the current chaining variable.

Let the legitimate message input x1 consist of s 512-bit blocks (s ≥ 1, prior to MD-
strengthening). Create a fraudulent message x2 of equal bitlength. Allow x2 to differ from
x1 up to and including the jth block, for any fixed j ≤ s−1. Use the (j+1)st block of xi,
denotedBi (i = 1, 2), as a matching/replacementblock, to be replaced by the 512-bit blocks
resulting from the collision search. Set all blocks in x2 subsequent to Bi identically equal
to those in x1; x′i will then differ from xi only in the single block (j + 1). For maximum
freedom in the construction of x2, choose j = s − 1. Let c1, c2 be the respective 128-bit
intermediate results (chaining variables) after the iterated hash operates on the first j blocks
of x1, x2. Compression function f maps (128 + 512 =) 640-bit inputs to 128-bit outputs.
Since the chaining variables depend on xi, gxi(= g) may be defined independent of xi
here (cf. equation (9.4)); assume both entire blocks Bi may be replaced without practical
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implication. Let g(H) = B denote an injective mapping from the space of 128-bit hash-
values to the space of 512-bit potential replacement blocks, defined as follows: map each
two-bit segment ofH to one of four 8-bit values in the replacement block B. (A practical
motivation for this is that if xi is an ASCII message to be printed, and the four 8-bit values
are selected to represent non-printable characters, then upon printing, the resulting blocks
B are all indistinguishable, leaving no evidence of adversarial manipulation.)

The collision-finding function r for this specific example (corresponding to the generic
equation (9.4)) is then:

r(H) =

{
f(c1, g(H)) ifH is even
f(c2, g(H)) ifH is odd

Collisions for MD5 (and similar hash functions) can thus be found in O(264) operations
and without significant storage requirements.

9.7.2 Pseudo-collisions and compression function attacks

The exhaustive or brute force methods discussed in §9.3.4, producing preimages, 2nd-pre-
images, and collisions for hash functions, are always theoretically possible. They are not
considered true “attacks” unless the number of operations required is significantly less than
both the strength conjectured by the hash function designer and that of hash functions of
similar parameters with ideal strength. An attack requiring such a reduced number of oper-
ations is informally said to break the hash function, whether or not this computational effort
is feasible in practice. Any attack method which demonstrates that conjectured properties
do not hold must be taken seriously; when this occurs, one must admit the possibility of
additional weaknesses.

In addition to considering the complexity of finding (ordinary) preimages and colli-
sions, it is common to examine the feasibility of attacks on slightly modified versions of
the hash function in question, for reasons explained below. The most common case is ex-
amination of the difficulty of finding preimages or collisions if one allows free choice of
IVs. Attacks on hash functions with unconstrained IVs dictate upper bounds on the security
of the actual algorithms. Vulnerabilities found, while not direct weaknesses in the overall
hash function, are nonetheless considered certificational weaknesses and cast suspicion on
overall security. In some cases, restricted attacks can be extended to full attacks by standard
techniques.

Table 9.11 lists the most commonly examined variations, including pseudo-collisions
– collisions allowing different IVs for the different message inputs. In contrast to preim-
ages and collisions, pseudo-preimages and pseudo-collisions are of limited direct practical
significance.

9.94 Note (alternate names for collision and preimage attacks) Alternate names for those in
Table 9.11 are as follows: preimage or 2nd-preimage ≡ target attack; pseudo-preimage
≡ free-start target attack; collision (fixed IV) ≡ collision attack; collision (random IV) ≡
semi-free-start collision attack; pseudo-collision≡ free-start collision attack.

9.95 Note (relative difficulty of attacks) Finding a collision can be no harder than finding a 2nd-
preimage. Similarly, finding a pseudo-collision can be no harder than finding (two distinct)
pseudo-preimages.
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↓Type of attack V V ′ x x′ y Find . . .

preimage V0 — * — y0 x: h(V0, x) = y0
pseudo-preimage * — * — y0 x, V : h(V, x) = y0
2nd-preimage V0 V0 x0 * h(V0, x0) x

′: h(V0, x0) = h(V0, x′)
collision (fixed IV) V0 V0 * * — x, x′:

h(V0, x) = h(V0, x
′)

collision (random IV) * V * * — x, x′, V :
h(V, x) = h(V, x′)

pseudo-collision * * * * — x, x′, V, V ′:
h(V, x) = h(V ′, x′)

Table 9.11: Definition of preimage and collision attacks. V and V ′ denote (potentially different)
IVs used for MDC h applied to inputs x and x′, respectively; V0 denotes the IV pre-specified in the
definition of h, x0 a pre-specified target input, and y = y0 a pre-specified target output. * Denotes
IVs or inputs which may be freely chosen by an attacker; h(V0, x0) denotes the hash-code resulting
from applying h with fixed IV V = V0 to input x = x0. — Means not applicable.

9.96 Example (trivial collisions for random IVs) If free choice of IV is allowed, then trivial
pseudo-collisions can be found by deleting leading blocks from a target message. For exam-
ple, for an iterated hash (cf. equation (9.1) on page 333), h(IV, x1x2) = f(f(IV, x1), x2).
Thus, for IV ′ = f(IV, x1), h(IV ′, x2) = h(IV, x1x2) yields a pseudo-collision of h, in-
dependent of the strength of f . (MD-strengthening as per Algorithm 9.26 precludes this.)

�

Another common analysis technique is to consider the strength of weakened variants of
an algorithm, or attack specific subcomponents, akin to cryptanalyzing an 8-round version
of DES in place of the full 16 rounds.

9.97 Definition An attack on the compression function of an iterated hash function is any attack
as per Table 9.11 with f(Hi−1, xi) replacingh(V0, x) – the compression function f in place
of hash functionh, chaining variableHi−1 in place of initializing valueV , and a single input
block xi in place of the arbitrary-length message x.

An attack on a compression function focuses on one fixed step i of the iterative func-
tion of equation (9.1). The entire message consists of a single block xi = x (without
MD-strengthening), and the hash output is taken to be the compression function output so
h(x) = Hi. The importance of such attacks arises from the following.

9.98 Note (compression function vs. hash function attacks) Any of the six attacks of Table 9.11
which is found for the compression function of an iterated hash can be extended to a similar
attack of roughly equal complexity on the overall hash. An iterated hash function is thus
in this regard at most as strong as its compression function. (However note, for example,
an overall pseudo-collision is not always of practical concern, since most hash functions
specify a fixed IV.)

For example, consider a message x = x1x2 . . . xt. Suppose a successful 2nd-preimage
attack on compression function f yields a 2nd-preimage x′1 6= x1 such that f(IV, x′1) =
f(IV, x1). Then, x′ = x′1x2 . . . xt is a preimage of h(x).

More positively, if MD-strengthening is used, the strength of an iterated hash with
respect to the attacks of Table 9.11 is the same as that of its compression function (cf.
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Fact 9.24). However, an iterated hash may certainly be weaker than its compression func-
tion (e.g., Example 9.96; Fact 9.37).

In summary, a compression function secure against preimage, 2nd-preimage, and col-
lision (fixed IV) attacks is necessary and sometimes, but not always, sufficient for a secure
iterated hash; and security against the other (i.e., free-start) attacks of Table 9.11 is desir-
able, but not always necessary for a secure hash function in practice. For this reason, com-
pression functions are analyzed in isolation, and attacks on compression functions as per
Definition 9.97 are considered. A further result motivating the study of pseudo-preimages
is the following.

9.99 Fact (pseudo-preimages yielding preimages) If the compression function f of an n-bit
iterated hash function h does not have ideal computational security (2n) against pseudo-
preimage attacks, then preimages for h can be found in fewer than 2n operations (cf. §9.3.4,
Table 9.2). This result is true even if h has MD-strengthening.

Justification. The attack requires messages of 3 or more blocks, with 2 or more uncon-
strained to allow a meet-in-the-middle attack (page 374). If pseudo-preimages can be found
in 2s operations, then 2(n+s)/2 forward points and 2(n−s)/2 backward points are employed
(fewer backward points are used since they are more costly). Preimages can thus be found
in 2 · 2(n+s)/2 operations.

9.7.3 Chaining attacks

Chaining attacks are those which are based on the iterative nature of hash functions and, in
particular, the use of chaining variables. These focus on the compression function f rather
than the overall hash function h, and may be further classified as below. An example for
context is first given.

9.100 Example (chaining attack) Consider a (candidate) collision resistant iterative hash func-
tion h producing a 128-bit hash-result, with a compression function f taking as inputs a
512-bit message block xi and 128-bit chaining variableHi (H0 = IV ) and producing out-
put Hi+1 = f(Hi, xi). For a fixed 10-block message x (640 bytes), consider H = h(x).
Suppose one picks any one of the 10 blocks, and wishes to replace it with another block
without affecting the hash H . If h behaves like a random mapping, the number of such
512-bit blocks is approximately 2512/2128 = 2384. Any efficient method for finding any
one of these 2384 blocks distinct from the original constitutes an attack on h. The challenge
is that such blocks are a sparse subset of all possible blocks, about 1 in 2128. �
(i) Correcting-block chaining attacks

Using the example above for context, one could attempt to (totally) replace a message x
with a new message x′, such that h(x) = h(x′), by using a single unconstrained “correct-
ing” block in x′, designated ahead of time, to be determined later such that it produces a
chaining value which results in the overall hash being equal to target valueh(x). Such a cor-
recting block attack can be used to find both preimages and collisions. If the unconstrained
block is the first (last) block in the message, it is called a correcting first (last) block at-
tack. These attacks may be precluded by requiring per-block redundancy, but this results in
an undesirable bandwidth penalty. Example 9.101 illustrates a correcting first block attack.
The extension of Yuval’s birthday attack (page 369), with message alterations restricted to
the last block of candidate messages, resembles a correcting last block attack applied simul-
taneously to two messages, seeking a (birthday) collision rather than a fixed overall target
hash-value.
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9.101 Example (correcting block attack on CBC cipher mode) The CBC mode of encryption
with non-secret key (H0 = IV ;Hi = Ek(Hi−1⊕xi)) is unsuitable as an MDC algorithm,
because it fails to be one-way – the compression function is reversible when the encryption
key is known. A message x′, of unconstrained length (say t blocks) can be constructed to
have any specified target hash-value H as follows. Let x′2, . . . x

′
t be t − 1 blocks chosen

freely. SetH ′t ← H , then for i from t to 1 computeH ′i−1 ← Dk(H
′
i)⊕x

′
i. Finally, compute

x∗1 ← Dk(H
′
1)⊕IV . Then, for x′ = x∗1x

′
2 . . . x

′
t, h(x

′) = H and all but block x∗1 (which
will appear random) can be freely chosen by an adversary; even this minor drawback can
be partially addressed by a meet-in-the-middle strategy (see below). Analogous remarks
apply to the CFB mode. �

(ii) Meet-in-the-middle chaining attacks

These are birthday attacks similar to Yuval’s (and which can be made essentially memory-
less) but which seek collisions on intermediate results (i.e., chaining variables) rather than
the overall hash-result. When applicable, they allow (unlike Yuval’s attack) one to find a
message with a pre-specified hash-result, for either a 2nd-preimage or a collision. An at-
tack point is identified between blocks of a candidate (fraudulent) message. Variations of
the blocks preceding and succeeding this point are generated. The variations are hashed
forward from the algorithm-specified IV (computingHi = f(Hi−1, xi) as usual) and back-
ward from the target final hash-result (computingHi = f−1(Hi+1, xi+1) for someHi+1,
xi+1, ideally for xi+1 chosen by the adversary), seeking a collision in the chaining vari-
able Hi at the attack point. For the attack to work, the attacker must be able to efficiently
go backwards through the chain (certainly moreso than by brute force – e.g., see Exam-
ple 9.102), i.e., invert the compression function in the following manner: given a value
Hi+1, find a pair (Hi, xi+1) such that f(Hi, xi+1) = Hi+1.

9.102 Example (meet-in-the-middle attack on invertible key chaining modes) Chaining modes
which allow easily derived stage keys result in reversible compression functions unsuitable
for use in MDCs due to lack of one-wayness (cf. Example 9.101). An example of such
invertible key chaining methods is Bitzer’s scheme: H0 = IV , Hi = f(Hi−1, xi) =
Eki(Hi−1)where ki = xi⊕s(Hi−1) and s(Hi−1) is a function mapping chaining variables
to the key space. For exposition, let s be the identity function. This compression function
is unsuitable because it falls to a meet-in-the-middle attack as outlined above. The ability
to move backwards through chaining variables, as required by such an attack, is possible
here with the chaining variableHi computed fromHi+1 as follows. Choose a fixed value
ki+1 ← k, computeHi ← Dk(Hi+1), then choose as message block xi+1 ← k⊕Hi. �

(iii) Fixed-point chaining attacks

A fixed point of a compression function is a pair (Hi−1, xi) such that f(Hi−1, xi) = Hi−1.
For such a pair of message block and chaining value, the overall hash on a message is un-
changed upon insertion of an arbitrary number of identical blocks xi at the chain point at
which that chaining value arises. Such attacks are thus of concern if it can be arranged that
the chaining variable has a value for which a fixed point is known. This includes the fol-
lowing cases: if fixed points can be found and it can be easily arranged that the chaining
variable take on a specific value; or if for arbitrary chaining values Hi−1, blocks xi can
be found which result in fixed-points. Fixed points allow 2nd-preimages and collisions to
be produced; their effect can be countered by inclusion of a trailing length-block (Algo-
rithm 9.26).
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(iv) Differential chaining attacks

Differential cryptanalysis has proven to be a powerful tool for the cryptanalysis of not only
block ciphers but also of hash functions (including MACs). For multi-round block ciphers
this attack method examines input differences (XORs) to round functions and the corre-
sponding output differences, searching for statistical anomalies. For hash functions, the
examination is of input differences to compression functions and the corresponding output
differences; a collision corresponds to an output difference of zero.

9.7.4 Attacks based on properties of underlying cipher

The implications of certain properties of block ciphers, which may be of no practical con-
cern when used for encryption, must be carefully examined when such ciphers are used
to construct iterated hash functions. The general danger is that such properties may facil-
itate adversarial manipulation of compression function inputs so as to allow prediction or
greater control of outputs or relations between outputs of successive iterations. Included
among block cipher properties of possible concern are the following (cf. Chapter 7):

1. complementation property: y = Ek(x) ⇐⇒ y = Ek(x), where x denotes bitwise
complement. This makes it trivial to find key-message pairs of block cipher inputs
whose outputs differ in a pre-determined manner. For example, for such a block ci-
pher E, the compression function f(Hi−1, xi) = EHi−1⊕xi(xi)⊕xi (a linear trans-
formation of the Matyas-Meyer-Oseas function) produces the same output for xi and
its bitwise complement xi.

2. weak keys: Ek(Ek(x)) = x (for all x). This property of involution of the block
cipher may allow an adversary to easily create a two-step fixed point of the compres-
sion function f in the case that message blocks xi have direct influence on the block
cipher key input (e.g., if f = Exi(Hi−1), insert 2 blocks xi containing a weak key).
The threat is similar for semi-weak keys, where Ek′(Ek(x)) = x.

3. fixed points: Ek(x) = x. Block cipher fixed points may facilitate fixed-point attacks
if an adversary can control the block cipher key input. For example, for the Davies-
Meyer compression function f(Hi−1, xi) = Exi(Hi−1)⊕Hi−1, if Hi−1 is a fixed
point of the block cipher for key xi (i.e., Exi(Hi−1) = Hi−1), then this yields a
predictable compression function output f(Hi−1, xi) = 0.

4. key collisions: Ek(x) = Ek′(x). These may allow compression function collisions.

Although they may serve as distinguishing metrics, attacks which appear purely certi-
ficational in nature should be noted separately from others; for example, fixed point attacks
appear to be of limited practical consequence.

9.103 Example (DES-based hash functions) Consider DES as the block cipher in question (see
§7.4). DES has the complementation property; has 4 weak keys and 6 pairs of semi-weak
keys (each with bit 2 equal to bit 3); each weak key has 232 fixed points (thus a random
plaintext is a fixed point of some weak key with probability 2−30), as do 4 of the semi-
weak keys; and key collisions can be found in 232 operations. The security implications of
these properties must be taken into account in the design of any DES-based hash function.
Concerns regarding both weak keys and the complementation property can be eliminated
by forcing key bits 2 and 3 to be 10 or 01 within the compression function. �
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9.8 Notes and further references
§9.1

The definitive reference for cryptographic hash functions, and an invaluable source for the
material in this chapter (including many otherwise unattributed results), is the comprehen-
sive treatment of Preneel [1003, 1004]; see also the surveys of Preneel [1002] and Preneel,
Govaerts, and Vandewalle [1006]. Davies and Price [308] also provide a solid treatment
of message authentication and data integrity. An extensive treatment of conventional hash-
ing, including historical discussion tracing origins back to IBM in 1953, is given by Knuth
[693, p.506-549]. Independent of cryptographic application, universal classes of hash func-
tions were introduced by Carter and Wegman [234] in the late 1970s, the idea being to find
a class of hash functions such that for every pair of inputs, the probability was low that a
randomly chosen function from the class resulted in that pair colliding. Shortly thereafter,
Wegman and Carter [1234] noted the cryptographic utility of these hash functions, when
combined with secret keys, for (unconditionally secure) message authentication tag sys-
tems; they formalized this concept, earlier considered by Gilbert, MacWilliams, and Sloane
[454] (predating the concept of digital signatures) who attribute the problem to Simmons.
Simmons ([1138],[1144]; see also Chapter 10 of Stinson [1178]) independently developed
a general theory of unconditionally secure message authentication schemes and the subject
of authentication codes (see also §9.5 below).

Rabin [1022, 1023] first suggested employing a one-way hash function (constructed by us-
ing successive message blocks to key an iterated block encryption) in conjunction with a
one-time signature scheme and later in a public-key signature scheme; Rabin essentially
noted the requirements of 2nd-preimage resistance and collision resistance. Merkle [850]
explored further uses of one-way hash functions for authentication, including the idea of
tree authentication [852] for both one-time signatures and authentication of public files.

§9.2
Merkle [850] (partially published as [853]) was the first to give a substantial (informal) def-
inition of one-way hash functions in 1979, specifying the properties of preimage and 2nd-
preimage resistance. Foreshadowing UOWHFs (see below), he suggested countering the
effect of Remark 9.36 by using slightly different hash functions h over time; Merkle [850,
p.16-18] also proposed a public key distribution method based on a one-way hash function
(effectively used as a one-way pseudo-permutation) and the birthday paradox, in a precur-
sor to his “puzzle system” (see page 537). The first formal definition of a CRHF was given
in 1988 by Damgård [295] (an informal definition was later given by Merkle [855, 854];
see also [853]), who was first to explore collision resistant hash functions in a complexity-
theoretic setting. Working from the idea of claw-resistant pairs of trapdoor permutations
due to Goldwasser, Micali, and Rivest [484], Damgård defined claw-resistant families of
permutations (without the trapdoor property). The term claw-resistant (originally: claw-
free) originates from the pictorial representation of a functional mapping showing two dis-
tinct domain elements being mapped to the same range element under distinct functionsf (i)

and f (j) (colliding at z = f (i)(x) = f (j)(y)), thereby tracing out a claw.

Goldwasser et al. [484] established that the intractability of factoring suffices for the exis-
tence of claw-resistant pairs of permutations. Damgård showed that the intractability of the
discrete logarithm problem likewise suffices. Using several reasonably efficient number-
theoretic constructions for families of claw-resistant permutations, he gave the first prov-
ably collision resistant hash functions, under such intractability assumptions (for discrete

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§9.8 Notes and further references 377

logarithms, the assumption required is that taking specific discrete logarithms be difficult).
Russell [1088] subsequently established that a collection of collision resistant hash func-
tions exists if and only if there exists a collection of claw-resistant pairs of pseudo-permu-
tations; a pseudo-permutation on a set is a function computationally indistinguishable from
a permutation (pairs of elements demonstrating non-injectivity are hard to find). It remains
open whether the existence of one-way functions suffices for the existence of collision re-
sistant hash functions.

The definition of a one-way function (Definition 9.9) was given in the seminal paper of
Diffie and Hellman [345], along with the use of the discrete exponential function modulo
a prime as a candidate OWF, which they credit to Gill. The idea of providing the hash-
value of some data, to indicate prior commitment to (or knowledge of) that data, was uti-
lized in Lamport’s one-time signature scheme (circa 1976); see page 485. The OWF of
Example 9.13 was known to Matyas and Meyer circa 1979. As noted by Massey [786], the
idea of one-wayness was published in 1873 by J.S. Jevons, who noted (preceding RSA by a
century) that multiplying two primes is easy whereas factoring the result is not. Published
work dated 1968 records the use of ciphers essentially as one-way functions (decryption
was not required) in a technique to avoid storing cleartext computer account passwords in
time-shared systems. These were referred to as one-way ciphers by Wilkes [1244] (p.91-
93 in 1968 or 1972 editions; p.147 in 1975 edition), who credits Needham with the idea
and an implementation thereof. The first proposal of a non-invertible function for the same
purpose appears to be that of Evans, Kantrowitz, and Weiss [375], while Purdy [1012] pro-
posed extremely high-degree, sparse polynomials over a prime field as a class of functions
which were computationally difficult to invert. Foreshadowing later research into collision
resistance, Purdy also defined the degeneracy of such a function to be the maximum number
of preimages than any image could have, noting that “if the degeneracy is catastrophically
large there may be no security at all”.

Naor and Yung [920] introduced the cryptographic primitive known as a universal one-way
hash function (UOWHF) family, and give a provably secure construction for a one-way hash
function from a one-way hash function which compresses by a single bit (t + 1 to t bits);
the main property of a UOWHF family is 2nd-preimage resistance as for a OWHF, but here
an instance of the function is picked at random from a family of hash functions after fixing
an input, as might be modeled in practice by using a random IV with a OWHF. Naor and
Yung [920] also prove by construction that UOWHFs exist if and only if one-way permu-
tations do, and show how to use UOWHFs to construct provably secure digital signature
schemes assuming the existence of any one-way permutation. Building on this, Rompel
[1068] showed how to construct a UOWHF family from any one-way function, and based
signature schemes on such hash functions; combining this with the fact that a one-way func-
tion can be constructed from any secure signature scheme, the result is that the existence of
one-way functions is necessary and sufficient for the existence of secure digital signature
schemes. De Santis and Yung [318] proceed with more efficient reductions from one-way
functions to UOWHFs, and show the equivalence of a number of complexity-theoretic def-
initions regarding collision resistance. Impagliazzo and Naor [569] give an efficient con-
struction for a UOWHF and prove security equivalent to the subset-sum problem (an NP-
hard problem whose corresponding decision problem is NP-complete); for parameters for
which a random instance of subset-sum is hard, they argue that this UOWHF is secure (cf.
Remark 9.12). Impagliazzo, Levin, and Luby [568] prove the existence of one-way func-
tions is necessary and sufficient for that of secure pseudorandom generators.

Application-specific (often unprovable) hash function properties beyond collision resist-
ance (but short of preimage resistance) may often be identified as necessary, e.g., for or-
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dinary RSA signatures computed directly after hashing, the multiplicative RSA property
dictates that for the hash function h used it be infeasible to find messages x, x1, x2 such
that h(x) = h(x1) · h(x2). Anderson [27] discusses such additional requirements on hash
functions. For a summary of requirements on a MAC in the special case of multi-cast au-
thentication, see Preneel [1003]. Bellare and Rogaway [93] include discussion of issues
related to the random nature of practical hash functions, and cryptographic uses thereof.
Damgård [295] showed that the security of a digital signature scheme which is not existen-
tially forgeable under an adaptive chosen-message attack will not be decreased if used in
conjunction with a collision-resistant hash function.

Bellare, Goldreich, and Goldwasser [88] (see also [89]) introduce the idea of incremental
hashing, involving computing a hash value over data and then updating the hash-value after
changing the data; the objective is that the computation required for the update be propor-
tional to the amount of change.

§9.3
Merkle’s meta-method [854] (Algorithm 9.25) was based on ideas from his 1979 Ph.D. the-
sis [850]. An equivalent construction was given by Damgård [296], which Gibson [450]
remarks on again yielding Merkle’s method. Naor and Yung [920] give a related construc-
tion for a UOWHF. See Preneel [1003] for fundamental results (cf. Remarks 9.35 and 9.36,
and Fact 9.27 on cascading hash functions which follow similar results on stream ciphers
by Maurer and Massey [822]). The padding method of Algorithms 9.29 and 9.30 originated
from ISO/IEC 10118-4 [608]. The basic idea of the long-message attack (Fact 9.37) is from
Winternitz [1250].

§9.4
The hash function of Algorithm 9.42 and referred to as Davies-Meyer (as cited per Quis-
quater and Girault [1019]) has been attributed by Davies to Meyer; apparently known to
Meyer and Matyas circa 1979, it was published along with Algorithm 9.41 by Matyas,
Meyer, and Oseas [805]. The Miyaguchi-Preneel scheme (Algorithm 9.43) was proposed
circa 1989 by Preneel [1003], and independently by Miyaguchi, Ohta, and Iwata [886]. The
three single-length rate-one schemes discussed (Remark 9.44) are among 12 compression
functions employing non-invertible chaining found through systematic analysis by Preneel
et al. [1007] to be provably secure under black-box analysis, 8 being certificationally vul-
nerable to fixed-point attack nonetheless. These 12 are linear transformations on the mes-
sage block and chaining variable (i.e., [x′,H ′] = A[x,H] for any of the 6 invertible 2× 2
binary matrices A) of the Matyas-Meyer-Oseas (Algorithm 9.41) and Miyaguchi-Preneel
schemes; these latter two themselves are among the 4 recommended when the underlying
cipher is resistant to differential cryptanalysis (e.g., DES), while Davies-Meyer is among
the remaining 8 recommended otherwise (e.g., for FEAL). MDC-2 and MDC-4 are of IBM
origin, proposed by Brachtl et al. [184], and reported by Meyer and Schilling [860]; details
of MDC-2 are also reported by Matyas [803]. For a description of MDC-4, see Bosselaers
and Preneel [178].

The DES-based hash function of Merkle [855] which is mentioned uses the meta-method
and employs a compression function f mapping 119-bit input to 112-bit output in 2 DES
operations, allowing 7-bit message blocks to be processed (with rate 0.055). An optimized
version maps 234 bits to 128 bits in 6 DES operations, processing 106-bit message blocks
(with rate 0.276); unfortunately, overheads related to “bit chopping” and the inconvenient
block size are substantial in practice. This construction is provably as secure as the under-
lying block cipher assuming an unflawed cipher (cf. Table 9.3; Preneel [1003] shows that
accounting for DES weak keys and complementation drops the rate slightly to 0.266). Win-
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ternitz [1250] considers the security of the Davies-Meyer hash under a black-box model (cf.
Remark 9.45).

The search for secure double-length hash functions of rate 1 is ongoing, the goal being
security better than single-length Matyas-Meyer-Oseas and approaching that of MDC-2.
Quisquater and Girault [1019] proposed two functions, one (QG-original) appearing in the
Abstracts of Eurocrypt’89 and a second (QG-revised) in the final proceedings altered to
counter an attack of Coppersmith [276] on the first. The attack, restricted to the case of
DES as underlying block cipher, uses fixed points resulting from weak keys to find colli-
sions in 236 DES operations. A general attack of Knudsen and Lai [688], which (unfortu-
nately) applies to a large class of double-length (i.e., 2n-bit) rate-one block-cipher-based
hashes including QG-original, finds preimages in about 2n operations plus 2n storage. The
systematic method used to establish this result was earlier used by Hohl et al. [560] to prove
that pseudo-preimage and pseudo-collision attacks on a large class of double-length hash
functions of rate 1/2 and 1, including MDC-2, are no more difficult than on the single-length
rate-one Davies-Meyer hash; related results are summarized by Lai and Knudsen [727].
A second attack due to Coppersmith [276], not restricted to DES, employs 88 correcting
blocks to find collisions for QG-revised in 240 steps. Another modification of QG-original,
the LOKI Double Hash Function (LOKI-DBH) of Brown, Pieprzyk, and Seberry [215], ap-
pears as a general construction to offer the same security as QG-revised (provided the un-
derlying block cipher is not LOKI).

The speeds in Table 9.5 are normalized from the timings reported by Dobbertin, Bosse-
laers, and Preneel [355], relative to an assembly code MD4 implementation optimized for
the Pentium processor, with a throughput (90 MHz clock) of 165.7 Mbit/s (optimized C
code was roughly a factor of 2 slower). See Bosselaers, Govaerts, and Vandewalle [177]
for a detailed MD5 implementation discussion.

MD4 and MD5 (Algorithms 9.49, 9.51) were designed by Rivest [1055, 1035]. An Aus-
tralian extension of MD5 known as HAVAL has also been proposed by Zheng, Pieprzyk,
and Seberry [1268]. The first published partial attack on MD4 was by den Boer and Bosse-
laers [324], who demonstrated collisions could be found when Round 1 (of the three) was
omitted from the compression function, and confirmed unpublished work of Merkle show-
ing that collisions could be found (for input pairs differing in only 3 bits) in under a mil-
lisecond on a personal computer if Round 3 was omitted. More devastating was the partial
attack by Vaudenay [1215] on the full MD4, which provided only near-collisions, but al-
lowed sets of inputs to be found for which, of the corresponding four 32-bit output words,
three are constant while the remaining word takes on all possible 32-bit values. This re-
vealed the word access-order in MD4 to be an unfortunate choice. Finally, late in 1995,
using techniques related to those which earlier allowed a partial attack on RIPEMD (see
below), Dobbertin [354] broke MD4 as a CRHF by finding not only collisions as stated in
Remark 9.50 (taking a few seconds on a personal computer), but collisions for meaningful
messages (in under one hour, requiring 20 free bytes at the start of the messages).

A first partial attack on MD5 was published by den Boer and Bosselaers [325], who found
pseudo-collisions for its compression function f , which maps a 128-bit chaining variable
and sixteen 32-bit words down to 128-bits; using 216 operations, they found a 16-word
message X and chaining variables S1 6= S2 (these differing only in 4 bits, the most sig-
nificant of each word), such that f(S1, X) = f(S2, X). Because this specialized internal
pseudo-collision could not be extended to an external collision due to the fixed initial chain-
ing values (and due to the special relation between the inputs), this attack was considered by
many to have little practical significance, although exhibiting a violation of the design goal
to build a CRHF from a collision resistant compression function. But in May of 1996, us-
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ing techniques related to his attack on MD4 above, Dobbertin (rump session, Eurocrypt’96)
found MD5 compression function collisions (Remark 9.52) in 10 hours on a personal com-
puter (about 234 compress function computations).

Anticipating the feasibility of 264 operations, Rivest [1055] proposed a method to extend
MD4 to 256 bits by running two copies of MD4 in parallel over the input, with different
initial chaining values and constants for the second, swapping the values of the variableA
with the first after processing each 16-word block and, upon completion, concatenating the
128-bit hash-values from each copy. However, in October of 1995 Dobbertin [352] found
collisions for the compression function of extended MD4 in 226 compress function opera-
tions, and conjectured that a more sophisticated attack could find a collision for extended
MD4 itself in O(240) operations.

MD2, an earlier and slower hash function, was designed in 1988 by Rivest; see Kaliski
[1033] for a description. Rogier and Chauvaud [1067] demonstrated that collisions can be
efficiently found for the compression function of MD2, and that the MD2 checksum block
is necessary to preclude overall MD2 collisions.

RIPEMD [178] was designed in 1992 by den Boer and others under the European RACE
Integrity Primitives Evaluation (RIPE) project. A version of MD4 strengthened to counter
known attacks, its compression function has two parallel computation lines of three 16-
step rounds. Nonetheless, early in 1995, Dobbertin [353] demonstrated that if the first or
last (parallel) round of the 3-round RIPEMD compress function is omitted, collisions can
be found in 231 compress function computations (one day on a 66 MHz personal com-
puter). This result coupled with concern about inherent limitations of 128-bit hash results
motivated RIPEMD-160 (Algorithm 9.55) by Dobbertin, Bosselaers, and Preneel [355];
but for corrections, see the directory /pub/COSIC/bosselae/ripemd/ at ftp site
ftp.esat.kuleuven.ac.be. Increased security is provided by five rounds (each
with two lines) and greater independence between the parallel lines, at a performance
penalty of a factor of 2. RIPEMD-128 (with 128-bit result and chaining variable) was si-
multaneously proposed as a drop-in upgrade for RIPEMD; it scales RIPEMD-160 back to
four rounds (each with two lines).

SHA-1 (Algorithm 9.53) is a U.S. government standard [404]. It differs from the original
standard SHA [403], which it supersedes, only in the inclusion of the 1-bit rotation in the
block expansion from 16 to 80 words. For discussion of how this expansion in SHA is re-
lated to linear error correcting codes, see Preneel [1004].

Lai and Massey [729] proposed two hash functions of rate 1/2 with 2m-bit hash values,
Tandem Davies-Meyer and Abreast Davies-Meyer, based on anm-bit block cipher with 2m-
bit key (e.g., IDEA), and a thirdm-bit hash function using a similar block cipher. Merkle’s
public-domain hash function Snefru [854] and the FEAL-based N-Hash proposed by Miya-
guchi, Ohta, and Iwata [886] are other hash functions which have attracted considerable at-
tention. Snefru, one of the earliest proposals, is based on the idea of Algorithm 9.41, (typi-
cally) using asE the first 128 bits of output of a custom-designed symmetric 512-bit block
cipher with fixed key k = 0. Differential cryptanalysis has been used by Biham and Shamir
[137] to find collisions for Snefru with 2 passes, and is feasible for Snefru with 4 passes;
Merkle currently recommends 8 passes (impacting performance). Cryptanalysis of the 128-
bit hash N-Hash has been carried out by Biham and Shamir [136], with attacks on 3, 6, 9,
and 12 rounds being of respective complexity 28, 224, 240, and 256 for the more secure of
the two proposed variations.

Despite many proposals, few hash functions based on modular arithmetic have withstood
attack, and most that have (including those which are provably secure) tend to be relatively
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inefficient. MASH-1 (Algorithm 9.56), from Committee Draft ISO/IEC 10118-4 [608],
evolved from a long line of related proposals successively broken and repaired, includ-
ing contributions by Jueneman; Davies and Price; A. Jung; Girault [457] (which includes a
summary); and members of ISO SC27/WG2 circa 1994-95 (e.g., in response to the crypt-
analysis of the 1994 draft proposal, by Coppersmith and Preneel, in ISO/IEC JTC1/SC27
N1055, Attachment 12, “Comments on MASH-1 and MASH-2 (Feb.21 1995)”). Most
prominent among prior proposals was the sqmodn algorithm (due to Jung) in informative
Annex D of CCITT Recommendation X.509 (1988 version), which despite suffering ig-
nominy at the hands of Coppersmith [275], was resurrected with modifications as the basis
for MASH-1.

§9.5
Simmons [1146] notes that techniques for message authentication without secrecy (today
called MACs) were known to Simmons, Stewart, and Stokes already in the early 1970s.
In the open literature, the idea of using DES to provide a MAC was presented already in
Feb. 1977 by Campbell [230], who wrote “. . . Each group of 64 message bits is passed
through the algorithm after being combined with the output of the previous pass. The final
DES output is thus a residue which is a cryptographic function of the entire message”, and
noted that to detect message replay or deletion each message could be made unique by using
per-message keys or cryptographically protected sequence numbers. Page 121 of this same
publication describes the use of encryption in conjunction with an appended redundancy
check code for manipulation detection (cf. Figure 9.8(b)).

The term MAC itself evolved in the period 1979-1982 during development of ANSI X9.9
[36], where it is defined as “an eight-digit number in hexadecimal format which is the result
of passing a financial message through the authentication algorithm using a specific key.”
FIPS 81 [398] standardizes MACs based on CBC and CFB modes (CFB-based MACs are
little-used, having some disadvantages over CBC-MAC and apparently no advantages); see
also FIPS 113 [400]. Algorithm 9.58 is generalized by ISO/IEC 9797 [597] to a CBC-based
MAC for ann-bit block cipher providing anm-bit MAC,m ≤ n, including an alternative to
the optional strengthening process of Algorithm 9.58: a second key k′ (possibly dependent
on k) is used to encrypt the final output block. As discussed in Chapter 15, using ISO/IEC
9797 with DES to produce a 32-bit MAC and Algorithm 9.29 for padding is equivalent
to the MAC specified in ISO 8731-1, ANSI X9.9 and required by ANSI X9.17. Regard-
ing RIPE-MAC (Example 9.63) [178], other than the 2−64 probability of guessing a 64-bit
MAC, and MAC forgery as applicable to all iterated MACs (see below), the best known at-
tacks providing key recovery are linear cryptanalysis using 242 known plaintexts for RIPE-
MAC1, and a 2112 exhaustive search for RIPE-MAC3. Bellare, Kilian, and Rogaway [91]
formally examine the security of CBC-based MACs and provide justification, establishing
(via exact rather than asymptotic arguments) that pseudorandom functions are preserved
under cipher block chaining; they also propose solutions to the problem of Example 9.62
(cf. Remark 9.59).

The MAA (Algorithm 9.68) was developed in response to a request by the Bankers Auto-
mated Clearing Services (U.K.), and first appeared as a U.K. National Physical Laboratory
Report (NPL Report DITC 17/83 February 1983). It has been part of an ISO banking stan-
dard [577] since 1987, and is due to Davies and Clayden [306]; comments on its security
(see also below) are offered by Preneel [1003], Davies [304], and Davies and Price [308],
who note that its design follows the general principles of the Decimal Shift and Add (DSA)
algorithm proposed by Sievi in 1980. As a consequence of the conjecture that MAA may
show weaknesses in the case of very long messages, ISO 8731-2 specifies a special mode
of operation for messages over 1024 bytes. For more recent results on MAA including ex-
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ploration of a key recovery attack, see Preneel and van Oorschot [1010].

Methods for constructing a MAC algorithm from an MDC, including the secret prefix, suf-
fix, and envelope methods, are discussed by Tsudik [1196]; Galvin, McCloghrie, and Davin
[438] suggest addressing the message extension problem (Example 9.65) in the secret suf-
fix method by using a prepended length field (this requires two passes over the message
if the length is not known a priori). Preneel and van Oorschot [1009] compare the secu-
rity of these methods; propose MD5-MAC (Algorithm 9.69) and similar constructions for
customized MAC functions based on RIPEMD and SHA; and provide Fact 9.57, which ap-
plies to MAA (n = 64 = 2m) with u = 232.5 and v = 232.3, while for MD5-MAC
(n = 128 = 2m) both u and v are on the order of 264. Remark 9.60 notwithstanding,
the use of an n-bit internal chaining variable with a MAC-value of bitlengthm = n/2 is
supported by these results.

The envelope method with padding (Example 9.66) is discussed by Kaliski and Robshaw
(CryptoBytes vol.1 no.1, Spring 1995). Preneel and van Oorschot [1010] proposed a key
recovery attack on this method, which although clearly impractical by requiring over 264

known text-MAC pairs (for MD5 with 128-bit key), reveals an architectural flaw. Bellare,
Canetti, and Krawczyk [86] rigorously examined the security of a nested MAC construction
(NMAC), and the practical variation HMAC thereof (Example 9.67), proving HMAC to be
secure provided the hash function used exhibits certain appropriate characteristics. Prior
to this, the related construction h(k1||h(k2||x)) was considered in the note of Kaliski and
Robshaw (see above).

Other recent proposals for practical MACs include the bucket hashing construction of Rog-
away [1065], and the XOR MAC scheme of Bellare, Guérin, and Rogaway [90]. The latter
is a provably secure construction for MACs under the assumption of the availability of a
finite pseudorandom function, which in practice is instantiated by a block cipher or hash
function; advantages include that it is parallelizable and incremental.

MACs intended to provide unconditional security are often called authentication codes (cf.
§9.1 above), with an authentication tag (cf. MAC value) accompanying data to provide
origin authentication (including data integrity). More formally, an authentication code in-
volves finite sets S of source states (plaintext), A of authentication tags, and K of secret
keys, and a set of rules such that each k ∈ K defines a mapping eK : S → A. An (authen-
ticated) message, consisting of a source state and a tag, can be verified only by the intended
recipient (as for MACs) possessing a pre-shared key. Wegman and Carter [1234] first com-
bined one-time pads with hash functions for message authentication; this approach was pur-
sued by Brassard [191] trading unconditional security for short keys.

This approach was further refined by Krawczyk [714] (see also [717]), whose CRC-based
scheme (Algorithm 9.72) is a minor modification of a construction by Rabin [1026]. A sec-
ond LFSR-based scheme proposed by Krawczyk for producingm-bit hashes (again com-
bined with one-time pads as per Algorithm 9.72) improves on a technique of Wegman and
Carter, and involves matrix-vector multiplication by anm×b binary Toeplitz matrixA (each
left-to-right diagonal is fixed: Ai,j = Ak,l for k − i = l − j), itself generated from a ran-
dom binary irreducible polynomial of degreem (defining the LFSR), andm bits of initial
state. Krawczyk proves that the probability of successful MAC forgery here for a b-bit mes-
sage is at most b/2m−1, e.g., less than 2−30 even form = 64 and a 1 Gbyte message (cf.
Fact 9.73). Earlier, Bierbrauer et al. [127] explored the relations between coding theory,
universal hashing, and practical authentication codes with relatively short keys (see also
Johansson, Kabatianskii, and Smeets [638]; and the survey of van Tilborg [1211]). These
and other MAC constructions suitable for use with stream ciphers are very fast, scalable,
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and information-theoretically secure when the short keys they require are used as one-time
pads; when used with key streams generated by pseudorandom generators, their security is
dependent on the stream and (at best) computationally secure.

Desmedt [335] investigated authenticity in stream ciphers, and proposed both uncondition-
ally secure authentication systems and stream ciphers providing authenticity. Lai, Rueppel,
and Woollven [731] define an efficient MAC for use with stream ciphers (but see Preneel
[1003] regarding a modification to address tampering with ends of messages). Part of an
initial secret key is used to seed a key stream generator, each bit of which selectively routes
message bits to one of two feedback shift registers (FSRs), the initial states of which are part
of the secret key and the final states of which comprise the MAC. The number of pseudoran-
dom bits required equals the number of message bits. Taylor [1189] proposes an alternate
MAC technique for use with stream ciphers.

§9.6
Simmons [1144] notes the use of sealed authenticators by the U.S. military. An early pre-
sentation of MACs and authentication is given by Meyer and Matyas [859]; the third or later
printings are recommended, and include the one-pass PCBC encryption-integritymethod of
Example 9.91. Example 9.89 was initially proposed by the U.S. National Bureau of Stan-
dards, and was subsequently found by Jueneman to have deficiencies; this is included in the
extensive discussion by Jueneman, Matyas, and Meyer [645] of using MDCs for integrity,
along with the idea of Example 9.90, which Davies and Price [308, p.124] also consider for
n = 16. Later work by Jueneman [644] considers both MDCs and MACs; see also Meyer
and Schilling [860]. Davies and Price also provide an excellent discussion of transaction au-
thentication, noting additional techniques (cf. §9.6.1) addressing message replay including
use of MAC values themselves from immediately preceding messages as chaining values in
place of random number chaining. Subtle flaws in various fielded data integrity techniques
are discussed by Stubblebine and Gligor [1179].

§9.7
The taxonomy of preimages and collisions is from Preneel [1003]. The alternate terminol-
ogy of Note 9.94 is from Lai and Massey [729], who published the first systematic treatment
of attacks on iterated hash functions, including relationships between fixed-start and free-
start attacks, considered ideal security, and re-examined MD-strengthening. The idea of
Algorithm 9.92 was published by Yuval [1262], but the implications of the birthday para-
dox were known to others at the time, e.g., see Merkle [850, p.12-13]. The details of the
memoryless version are from van Oorschot and Wiener [1207], who also show the process
can be perfectly parallelized (i.e., attaining a factor r speedup with r processors) using par-
allel collision search methods; related independent work (unpublished) has been reported
by Quisquater.

Meet-in-the-middle chaining attacks can be extended to handle additional constraints and
otherwise generalized. A “triple birthday” chaining attack, applicable when the compres-
sion function is invertible, is given by Coppersmith [267] and generalized by Girault, Co-
hen, Campana [460]; see also Jueneman [644]. For additional discussion of differential
cryptanalysis of hash functions based on block ciphers, see Biham and Shamir [138], Pre-
neel, Govaerts, and Vandewalle [1005], and Rijmen and Preneel [1050].
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